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Abstract

The Web contains vast amounts of semi-structured data in the form of HTML
tables found on Web pages which may serve for various applications. One promi-
nent application, which is often referred to Semantic Table Interpretation, is to
exploit the semantics of a widely recognized knowledge bases (KB) by matching
tabular data, including column headers and cell contents, to semantically rich de-
scriptions of classes, entities and properties in Web KBs. In this master’s thesis,
we focus on relational tables which are valuable sources of facts about real-world
entities (persons, locations, organizations, etc.) and we propose a robust and effi-
cient approach for bridging the gap between millions of Web tables and large-scale
Knowledge graphs such as DBpedia. Our approach is holistic and fully unsuper-
vised for semantic interpretation of Web tables based on the DBpedia Knowledge
graph. Our approach covers three phases that heavily rely on word and entity
pre-trained embeddings to uncover semantics of Web tables. Our experimental
evaluation is conducted using the T2D gold standard corpus. Our results are very
promising compared to several existing approaches of annotation in web tables.

Keywords: Linked Data, Semantic Table Interpretation, Entity Linking,
Semantic embeddings
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Introduction

Nowadays, vast amounts of information is available in structured forms like spread-
sheets, database relations, and tables; all embedded in HTML Web documents.
Among all of these semi-structured data sources, Web tables are considered as
valuable sources of high-quality relational data. The Web contains approximately
more than 154 million HTML tables of relational data (Cafarella et al., 2008),
Wikipedia only containing 3.2 million high-quality tables. Recently, extracting
the semantics of Web tables to produce machine understandable knowledge has
become an active area of research (Zhang and Ziqi, 2014; Bhagavatula et al., 2015;
Efthymiou et al., 2017; Kim et al., 2018). Among the different table types avail-
able on the Web, relational tables (also referred to as genuine tables) are of special
interest. They describe a set of entities (such as persons, organizations, locations,
etc.) along with their attributes. However, unlike tables in relational databases,
these relationships are not made explicit in web tables; uncovering them is one of
the main research challenges. The uncovered semantics can be leveraged in var-
ious applications, including table search (Nguyen et al., 2015), knowledge base
construction, population (Zhang et al., 2020), and table completion (Zhang and
Balog, 2019). Fortunately, a large number of Knowledge Graphs have been de-
veloped rapidly during the last ten years as multi-relational structured sources
of knowledge. Knowledge Graphs (KG) (Paulheim, 2017) have widespread ap-
plications in information retrieval, text mining, and natural language processing.
Cross-domain knowledge bases such as DBpedia (Lehmann et al., 2015), YAGO
(Mahdisoltani et al., 2014), or the Google Knowledge Graph (Uyar and Aliyu,
2015) are used as background knowledge in a growing range of applications in-
cluding the Semantic Interpretation of Web tables (Efthymiou et al., 2017; Bha-
gavatula et al., 2015; Zhang and Ziqi, 2014; Zhang, 2017; Fetahu et al., 2019).
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However, in order to achieve this purpose, a number of tasks need to be imple-
mented:

• The Column Type Annotation (CTA) task that identifies the most likely
semantic type(s) in a given KG for the core column in a Web table.

• Entity linking (EL) is a key step towards uncovering semantics in Web ta-
bles by recognizing and disambiguating specific entities (such as persons,
organizations, locations, etc.) and linking them to entities in Knowledge
graphs.

• Columns Predicate Annotation (CPA) refers to the task of associating a
pair of columns in a table with the relation that holds between them and/or
extracting relationship information from tabular data and representing them
in a structured format such as RDF triple (subject-predicate-object).

While large number of existing approaches focus on the task of EL in Web
tables (Efthymiou et al., 2017; Bhagavatula et al., 2015; Luo et al., 2018). Few
approaches focus on Column Type Annotation (Kim et al., 2018) and Relation
extraction in Web tables (Chen et al., 2018a; Fetahu et al., 2019) even if they
are crucial tasks for several applications such as Knowledge Base enrichment,
completion and refinement. Although, semantic interpretation of Web tables is
a crucial and complex process for many reasons: (i) The types of the entities
described in a table are not known in advance, and the entities described may
correspond to more than one type in the target of KG; however, the poor context
offered by Web tables in comparison with texts makes the entity disambiguation in
Web tables crucial. (ii) The size of both KGs and Web tables corpora is extremely
large; (iii) KGs are not complete enough to cover all the entities of Web tables and
novel entity discovery in Web tables is challenging (Zhang et al., 2020).

In this thesis, we propose a holistic approach for Web tables interpretation
(annotation) by uncovering their semantics based on to the DBpedia knowledge
graph as background knowledge. Thus, we propose a robust and efficient approach
for bridging the gap between millions of Web tables and large-scale Knowledge
graphs such as DBpedia. The main contributions of our approach are:

• An unsupervised and holistic approach for semantic table interpretation that
covers all key tasks of Column Type Annotation, Entity Linking and Columns
Predicate Annotation.
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• We rely on Dbpedia knowledge graph as background knowledge for seman-
tic interpretation of Web tables, but our approach can be generalised to any
cross-domain knowledge graphs.

Outline

The master thesis in structured in four chapters organized as follows:

Chapter 1: Basic concepts introduces the fundamentals and theoretical con-
cepts that our work relies on. This chapter presents the foundations of Linked
Data as well as Web tables.

Chapter 2: Matching Web Tables to a Knowledge Graph. In this chapter,
we discuss the task of semantic interpretation web tables; we present the state of
the art of matching web tables to knowledge graphs.

Chapter 3: Contributions. This chapter describes our contributions and de-
tails the different steps of our Holistic Approach for Semantic Interpretation of
Relational Web tables.

Chapter 4: Evaluation presents the experiments and results obtained by our
proposed method. Furthermore, our results are compared and discussed taking
with respect to similar methods for semantic interpretation in Web tables.



Chapter 1
Basic concepts

Introduction

This chapter gives an overview of the basic concepts of our research work. The
first section introduces the concept of Linked Open Data (LOD) and its funda-
mental principles: the standard Resource Description Framework (RDF) as the
basic language for publishing structured data in the Linked Open Data, as well as
the standard SPARQL query language, a protocol to query RDF data. The third
section introduces the notion of the knowledge graphs and presents the most com-
monly investigated knowledge graphs in research works. The last section defines
the concept of Web tables and their classification in different research works.

1.1 Linked Open Data

The Web is the most famous internet service composed of interconnected hyper-
text documents which makes available a vast amount of data in different formats:
text, images, videos and other multimedia elements. Facing the exponential vol-
ume of heterogeneous data available, search engines need background knowledge
to meet users queries and enrich search results with structured knowledge. Re-
cently, the Linked Open Data (LOD) effort community addressed this issue and
makes data understandable by machines.

4
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1.1.1 Linked Open Data Principles

With the emergence of the Semantic Web, the necessity of creating a Web of
Data has increased and becomes an objective. In this way, Linked Data has been
proposed as a paradigm for publishing and connecting structured data on the Web.
More specifically, (Tim Berners-Lee, 2006) presented the four fundamentals of
linked data:

1. Use URIs as names for things

2. Use HTTP URIs so that people can look up those names

3. When someone looks up a URI, provide useful information, using the stan-
dards such as RDF, RDFS, OWL, and SPARQL.

4. Include links to other URIs, so that they can discover more things

Based on these principles, Linked Open Data (LOD) was introduced in (Bizer
et al., 2011) as an open, interlinked collection of datasets. We can visualize the
success of linked data from the growth of LOD Cloud which currently contains
1,239 datasets with 16,147 links. Figure 1.2 illustrates the last updated version
of the LOD cloud1 on March 2019. Some datasets like DBpedia has become the
central and the highly interconnected dataset. In the next section, we will present
some of these datasets.

1.1.2 Resource Description Framework

As introduced by the World Wide Web Consortium (W3C) recommendation (Carroll
and Klyne, 2004), the Resource Description Framework (RDF) is a standard for
sharing information in the Web. RDF framework adopts a generic graph-based
data model to represent resources by triples in the following format:

<subject> < predicate > <object>

An RDF triple contains three components as depicted in Figure 1.1:

1https://lod-cloud.net/
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Figure 1.1: The Linking Open Data cloud diagram on 2019

• A Subject is an IRI or blank node; represents the resource to be described.

• A Predicate which is an IRI; represents a type of property applicable to the
resource.

• An Object which is an IRI, a literal or a blank node; represents the value of
the property for a subject

An RDF graph is a set of RDF triples, in which nodes of the graph are the set of
subjects and objects, while edges are predicates that connect subjects to objects.
In such a graph-based knowledge representation, entities, which are the nodes of
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Figure 1.2: RDF

the graph, are connected by relations, which are the edges of the graph. Each
entity is uniquely identified with an Internationalized Resource Identifier (IRI).
RDF allows to assign a type or a class to entities by using the predefined RDF
predicate rdf:type (e.g. (:Berlin, rdf:type, :city). More formally, we adopt the
definition of (Ristoski, 2018):

Definition 1.1. An RDF graph is a labeled graph G = (V, E), where V is a set of
vertices, and E is a set of directed edges, where each vertex v ∈ V is identified by
a unique identifier, and each edge e ∈ E is labeled with a label from a finite set of
edge labels.

RDF is a data model and not a format. To this end, there are several machine
readable serialization formats for publishing an RDF graph on the Web such as:

• RDF/XML

• Turtle

• N-Triples

A simple RDF description, serialized in Turtle, of the city Mannheim in Germany
is shown in Figure 1.1 In this example, the first three rows specify the names-
paces. While the last four lines defines 4 RDF triples that provide some descrip-
tions about the resource ex:Mannheim. RDF allows to define assertions about a
resource.

1.1.3 The SPARQL query language

The SPARQL Protocol and RDF Query Language (SPARQL) is the W3C stan-
dard language and protocol to query RDF data (W3C, ). Triple patterns are triples
where subject, predicate and/or object value can be unknown and replaced by a
variable (traditionally identified by a question mark, e.g. ?v for variable v). A
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Figure 1.3: Example of triples in the Turtle syntax

triple pattern may match different triples in a given RDF graph, hence its name.
For instance, the triple pattern <?s p ?o > matches all triples with the predicate
p, and triple pattern <?s ?p ?o > matches any triple. SPARQL uses triple patterns
to query RDF data. The triple patterns evaluation returns mappings between the
query variables and their matching values.

A SPARQL query is a graph pattern (set of triple patterns) which must correspond
to a sub-graph of the RDF graph queried to provide results. SPARQL queries
consists of two main clauses: the first clause ”SELECT” aims to specify the query
form, while the second clause ”WHERE” aims to specify a graph model to be
matched by queried graph resources. Consider the example SPARQL query in
Listing 1.1:

1 PREFIX dbo: <http://dbpedia.org/ontology/>

2

3 SELECT DISTINCT ?film_URI WHERE {

4 ?film_URI rdf:type dbo:Film> .

5 } LIMIT 10

Listing 1.1: SPARQL query example

Using DBpedia SPARQL endpoint2, this query displays the first 10 film URIs
available on DBpedia.

1.1.4 Knowledge Graphs

Recently, the term knowledge graph has been used more frequently instead of
the term knowledge base, but no clear definition exists on the meaning of these

2http://dbpedia.org/sparql
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terms. As indicated in (Paulheim, 2017), the term Knowledge Graph was coined
by Google in 2012, referring to their use of semantic knowledge in Web Search
(“Things, not strings”), and is recently also used to refer to Semantic Web knowl-
edge bases such as DBpedia, Wikidata, Freebase, YAGO.
A knowledge graph:

• mainly describes real world entities and their interrelations, organized in a
graph.

• defines possible classes and relations of entities in a schema.

• allows for potentially interrelating arbitrary entities with each other.

• covers various topical domains.

Knowledge graphs on the Semantic Web are generally based on linked data. It will
be used to refer to a machine-readable representation of entities, their properties
and taxonomy of classes in which they are organized. Furthermore, knowledge
graphs are supposed to cover a wide range of topics that exist in the real world,
and are not supposed to be restricted to only one domain (such as geographic
entities). For the purpose of this master thesis, only large-scale, cross-domain
knowledge graphs are discussed below, as only these knowledge graphs are useful
for general profiling of the content of web table corpora. Table 1.1 summarizes
the characteristics of the most popular knowledge graphs.

DBpedia

DBpedia is a very popular knowledge base which is extracted automatically from
structured data in Wikipedia using the key-value pairs in the Wikipedia infoboxes.
This multi-lingual knowledge base includes 125 languages versions which de-
scribe together 38.3 million things. Altogether, the most recent DBpedia release
(2016-10)3 extracted from the updated Wikipedia dumps since October 2016, it
covers 13 billion RDF triples extracted from (the English edition Wikipedia (1.7
billion), other language editions (6.6 billion) and the Wikipedia Commons and
Wikidata (4.8 billion)). In addition, the DBpedia knowledge base is located in the
center of the LOD cloud since it is highly interconnected with other datasets in
the semantic web.

3https://wiki.dbpedia.org/blog/new-dbpedia-release-%E2%80%93-2016-10
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Table 1.1: Overview of common knowledge graphs (reproduced from (Paul-
heim,2017))

Name Instances Facts Types Relations
DBpedia (English) 4,806,150 176,043,129 735 2,813
YAGO 4,595,906 25,946,870 488,469 77
Freebase 49,947,845 3,041,722,635 26,507 37,781
Wikidata 15,602,060 65,993,797 23,157 1,673
NELL 2,006,896 432,845 285 425
OpenCyc 118,499 2,413,894 45,153 18,526
Google Knowledge Graph 570,000,000 18,000,000,000 1,500 35,000
Google Knowledge Vault 45,000,000 271,000,000 1,100 4,469
Yahoo! Knowledge Graph 3,443,743 1,391,054,990 250 800

Freebase

Freebase is a collaboratively, public, editable knowledge base that enables users to
add or modify the information in the knowledge base via APIs and a Web interface
(Bollacker et al., 2008). Freebase based on the notions of objects, facts, types, and
properties. Each object has at least one type and uses properties with these types
to represent facts. With more than 50 million entities and 3 billion facts, Freebase
considered one of the largest knowledge bases.

Wikidata

The Wikidata knowledge base has the same idea like Freebase. However, it is
a collaboratively edited knowledge base successor of Freebase and it is operated
by the Wikimedia foundation4 . Currently, 76 million instances5 in Wikidata de-
scribed in more than 350 languages. The most important aspect of Wikidata is
that for each fact a provenance metadata can be included such as the source.

4http://wikimediafoundation.org/
5https://www.wikidata.org/wiki/Wikidata:Statistics
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Google’s Knowledge Graph

Google Knowledge Graph (GKG) is a multi-lingual knowledge base, realized in
2012, used by Google to add semantic search functionality to its search engine.
The GKG contains more than 18 billion facts over 570 million instances. Thus, It
is currently supposed the largest knowledge graph and linked data set in the world,
but not publicly accessible.

YAGO

YAGO is the abbreviation for Yet Another Great Ontology and similar to DBpe-
dia, it is extracted from Wikipedia. However, the type hierarchy used by YAGO is
based on WordNet and contains almost half a million classes. The latest ver-
sion of YAGO contains more than 10 million instances and 120 million facts
(Mahdisoltani et al., 2014). Unlike DBpedia, YAGO aims at an automatic fusion
of knowledge extracted from various Wikipedia language editions, using different
heuristics which are correct in about 95%.

1.2 Web tables

Currently, tables on web pages ”web tables” are considered as an important source
of data since they represent their content in a structured way. Moreover, it is
proved that Web tables exist in large quantity on the Web and cover several topics.
For example The WebTables systems (Cafarella et al., 2008) extracted approxi-
mately 14.1 billion raw HTML tables from the English documents in Google’s
main index, of which 154 million are in relational data (high-quality tables).
In this section, we study the notion of table in general and the key concepts as-
sociated with this notion as well as the different classifications of Web Tables
mentioned in previous research in the field.

1.2.1 Definitions

Most of the research defines a table as a two-dimensional structure provides a
compact visualization of data that makes it easier to search and compare data
(Zanibbi et al., 2004). This compact form represents data in cells organized in
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columns and rows.
(Lautert et al., 2013), define web table as follows:

Definition 1.2. (Web Table)
Web Tables WT is a two-dimensional tabular structure used on a web page. It
is composed of an ordered set of x rows and y columns where each intersection
between x and y determines a cell that has a certain value.

In different works, tables have very distinct characteristics and specification.
The following figure distinguishes between two types of tables:

Figure 1.4: Difference between Document and Relational Tables

Figure 1.4 shows the complex layout of document tables and the simple layout
of the relational database tables. Despite the structural complexity of Document
Tables, humans still try to understand them, whereas it is very challenging to in-
terpret these types of tables. In the other hand, Relational Tables that are set up
for programmed handling. Its goal is to store data in simple and modifiable data
structures.
For further details about the taxonomy of table types, the rest of this section an-
alyzes and explains in detail the different classifications of web tables, and goes
further by providing examples.

1.2.2 Classifications of Web Tables

In order to better understand the table classification task, we propose table type
taxonomy similar to that proposed (Cafarella et al., 2008; Limaye et al., 2010;
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Yakout et al., 2012). Thus, our proposal classifier illustrated in Figure 1.4 which
aims to distinguish between two main types of tables: (a) Layout tables and (b)
Content tables (Genuine).

Figure 1.5: Web table classification

As shown in the Figure 1.5 we can distinguishing between genuine and non-
genuine tables, with more fine-grained classification schemes. Therefore, genuine
tables are further divided into three categories: horizontal, vertical and matrix
tables. Layout tables are divided into two categories: navigational tables and for-
matting tables.

Layout Tables:
Layouts Tables represent the vast majority of HTML tables on the Web that used
for layout purpose. This type of table often contains longer texts, images or hy-
perlinks and does not contain any relational content. This table category can be
divided into formatting table, which used to organize certain elements on the web
page, and navigation table, which is composed of cells organized for the naviga-
tion purpose. Figure 1.6 shows an example of layout table.

Figure 1.6: Layout table about Tunisie
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Genuine tables:
A genuine table is a two-dimensional structured element of knowledge that con-
tains coherent and potentially redundant information. It can formalize data in a
Relational model. Unlike layout table which contains no knowledge, genuine ta-
bles are often rich in simple strings or numeric values. Below, we present three
classes of genuine Web tables: horizontal, Vertical and Matrix web tables.

Horizontal Web Table:
A horizontal table presents in each row a specific object, a named entity, and the
column provides the attributes that describe the entity. These types of tables of-
ten aim to compare or list elements with additional information. The figure 1.7
presents an example of horizontal web table.

Figure 1.7: Horizontal Web Table

Vertical Web Table:
A web table called Vertical if its tuples are arranged vertically. These tables often
list multiple attributes for a series of similar entities. An example of Vertical web
table is shown in figure 1.8.

Figure 1.8: Vertical Web Table

Matrix Web Table:
Matrix tables are widely used to present statistics and comparisons between the
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data. In this type of table, the subject represents both the row and column headers;
however the object is obtained by the intersection of the 2 subjects together. For
example, Figure 1.9 show statistics for car accident; cell c33 (intersection of row
3 and column 3) corresponds to the number mechanical failure occurring in the
1980s.

Figure 1.9: Matrix Web Table

Overall, the diversity of table types presented several challenges. Therefore, sev-
eral classification approaches have been proposed in order to distinguish between
genuine and layouts Web Table class. (Wang and Hu, 2002), for example, pro-
posed a machine learning based approach for the detection of genuine Web tables
which take into account Decision trees and Support Sector Machines (SVM) for
the classification task.

1.3 Conclusion

In this chapter we introduced the concept of web tables and its main classifi-
cations. In addition, we have detailed various common knowledge bases. We
also presented at the beginning of this chapter, the RDF framework, the SPARQL
query language and linked open data.



Chapter 2
Matching Web Tables to a
Knowledge Graph

2.1 Introduction

In this chapter, we present the foundations of matching web tables to knowledge
bases, which poses several challenges related to web tables as a data source. This
chapter is organized as follows. Section 2.2 retrieves table metadata. Section 2.3,
details each sub-task of the matching web tables to knowledge bases process by
considering as input a tabular structure. In the last section, we present several
related works on the semantic annotation of tables.

2.2 Metadata information

In contrast to other structured data sources like relational databases, tables lack
any formal metadata or explicit schema (Cafarella et al., 2008). In our work, we
are interested in relational web tables, a type of genuine tables that cover a col-
lection of entities characterized by attributes. Indeed, the relational tables rich on
data about different types of entities and contain multiple attributes of these en-
tities. However, to work with web tables and exploit their high quality relational
data, it is necessary to apply certain methods to retrieve different metadata infor-
mation depending on the use case of the web table. For example, in our case, the

16
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task of mapping web tables to knowledge bases requires the following metadata
information: entity label column, attribute label row, column data types, and lan-
guage information of the table.
In the following, we list the different types of metadata that are provided for the
web tables. in fact, table metadata can include specific information such as ta-
ble title, header row, label column, header column, column types, data type, table
orientation (horizontal or vertical), and data language, they can also contain con-
text information such as the URL of the web page, the text before and after the
table (Surrounding context) as well as the title of the HTML page, which aim to
recovering the semantics of a table.

Example 2.1. Figure 2.1 illustrate the metadata retrieved for the table of cities
in Tunisia. In this example, the second column represents the entity label column
which contains the names of cites, while the rest of columns are of types numeric
and string. The first row reserved for the attribute labels. Moreover, the table
contains information in English. For the contextual information of the table, it
can be determined using the URL, the title of the page web, the text before the
table and the title of the table.

In addition, the recovered metadata can also include the orientation of the table
because a web table can be arranged vertically or horizontally. In fact, a relational
table arranged horizontally if their rows represent the entities and their columns
represent the attributes, and it is arranged vertically if it is the other way around
(Lehmberg et al., 2016).
After introducing the general structure of a web table, in the next section we will
present the details of the semantic annotation process.

2.3 Semantic annotation in Web Tables

Web table annotation is the process of interpreting the rows of Web tables and
matching them to semantically rich descriptions of entities published in Web KBs.
This section presents the three main tasks of semantics table interpretation which
are as follows:

• Column Type Prediction: is task of annotating each column in the table
with a class determining from the knowledge base that semantically de-
scribes the entities of the column (e.g., Person, Film, etc.).
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Figure 2.1: Table Metadata

• Entity linking in tables which aims to annotate the values of cells in a web
table with their corresponding entities from a knowledge base

• Relation extraction: aims to determining the relation between the label col-
umn and another column in the same web table from the knowledge base.

2.3.1 Entity Linking

Entity Linking (EL) is a key task in the semantic annotation process; it can fa-
cilitate several tasks such as knowledge base population, question answering, and
information integration. For simplicity, let M denote a collection of mentions in
a web tables. Each mention m in M is characterized by its context that comprises
all mentions appearing with m in the same row and same column. Given a knowl-
edge base KB containing a set of entities, the goal of EL is to match each mention
m M to its corresponding entity e E in the KB. However, some entity mention in
a web table may have not referring entity in the KB. In this case, the EL system
mapped these mention as NIL and called unlikable mentions.
An EL system must disambiguate mentions in a web table and identify the map-
ping entity for each mention. It is in this sense that, a basic approach to entity
linking has emerged that consists of a three mains steps, as shown in Figure 2.2.
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Figure 2.2: Steps of Entity Linking task

Mention detection: also known as extractor or spotter, it is the first step of the
entity linking task that aims to detect terms or phrases from which links to entities
should be made. Generally, majority of entity linking systems have based their
works on a large dictionary of entity surface forms to detect mentions. Indeed, if
the text value considered does not correspond to any entry in the dictionary, it will
not be considered as a mention. There are also approaches that rely on Named
entity Recognition NER techniques in the areas of Natural Language Process-
ing (NLP) to detect text value that can refer to mentions. Moreover, to recognize
named entities, it is often desirable to apply certain other pre-processing steps such
as capitalization, POS tagging, removal of stop words, phrase chunking (Cheng
and Roth, 2013).

Candidate generation: also called searcher since it is based on the lookup method
(Hachey et al., 2013). At this stage, a set of candidate entities is generated from
the Knowledge Base for each mention detected in the first step. The candidate
generation step is often considered as a ranking problem; since at this step the
number of candidates for each mention can be reduced in order to keep only can-
didates highly linked to the mention. Therefore, selecting fewer candidates will
reduce execution time and make the disambiguation task easier.

Disambiguation: The last step, which is the most important step and the heart
of the entity linking process; for each mention, select an entity or none from the
set of candidate entities generated in the previous step. In other words, to resolve
the ambiguity, select the entity that makes the most common sense with the target
mention. In literature, disambiguation task can rely on prior importance of en-
tities, contextual similarity between mention and entity as well as the coherence
among all entities determined using networks structure such as graph. Indeed,
most of graph-based approaches adopt collective strategies based on the context
similarity between the mention and the entity (Han et al., 2011).
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2.3.2 Column Type Prediction

An entity column in a web table is a list of mentions. The Column type predic-
tion task aims to matching the common type of these mentions with a semantic
type extracted from KB classes. For example, the first column of table in fig-
ure 2.3 composed of “Tunis”, “Sfax”, “Sousse” and “Kairouan” is annotated with
dbo:City class of DBpedia. There are several recognized approaches that allow

Figure 2.3: Column Type Prediction task

the column annotation task, such as: Entity search (Mulwad et al., 2010) basing
in the idea that each mention in the column mapped to a list of classes and then
PageRank-based method is used to affect a score for the entities’ classes, from
which the class with the highest score considering as the label class. There are
also approaches that determining the column type based on strategies like major-
ity voting (Zwicklbauer et al., 2013; Venetis et al., 2011). Some other studies like
(Chen et al., 2018b) use semantic embedding and Convolutional Neural Networks
(CNN) based method to automatically trains machine learning models to predict
the column type.

2.3.3 Relation Extraction

Relation Extraction refers to the task of matching pair of column in a web table
to property in the knowledge base. Figure 2.4 presents an example of a city ta-
ble annotate with predicate from knowledge base. The table contains cities, their
populations and their governorates. Therefore, the “dbo:City” label column re-
lated to the “dbo:Population” column with the relation “dbo:populationTotal”. In
the same way, the relation between the label column and the “dbo:Governorate”
is “dbo:isPartOf”.



Section 2.4 – Approaches for Web tables annotation 21

Figure 2.4: Relation Extraction task

Several existing approaches that mapping pair of columns in web table with re-
lations from a knowledge base. Most of these approaches combine the results of
entity linking and column type prediction tasks as well as the similarity measure
to extract relations between columns (Nguyen et al., 2019; Thawani et al., 2019).

2.4 Approaches for Web tables annotation

The web contains a large variety of tables which can be effectively utilized to pro-
vide and collect useful information across multiple domains. (Cafarella et al.,
2008) showed that out of 14 billion high-quality HTML tables in the Google
crawl, an estimated 154 million HTML tables of relational data. Interpret the se-
mantics of these web tables to produce machine-understandable knowledge has
become a widely recognized research area and used in a wide variety of ap-
plications. In this section, we will discuss recently proposed methods in the
area of semantic table annotation. Therefore, these approaches can be classi-
fied into two classes: Search based approaches and Supervised Learning based
approaches.Table 2.1 describes these two classes of approaches.

2.4.1 Search based approaches

A majority of recent works based their approach on keyword lookup method. In
other words, these approaches search for a particular keyword using a lookup



22 Chapter 2 : Matching Web Tables to a Knowledge Graph

Table 2.1: Comparison of web table annotation classes

method with a public API of the target KB, like (Zhang and Ziqi, 2014; Efthymiou
et al., 2017; Zhang, 2017) or a manually created search index like (Zhang et al.,
2013). Generally these approaches are limited to exact matches and regular ex-
pression queries.

TableMiner:

TableMiner (Zhang and Ziqi, 2014) and its improvement TableMiner++ (Zhang,
2017) are semantic web tables annotation tools based on the lookup method us-
ing the public query APIs of DBpedia and Freebase for the candidate generation
process. These two incremental approaches characterized by an efficient boot-
strapping annotation method used to effectively matching columns and cells to
entities in the knowledge base. Therefore, authors starting by annotating the cells
of each table column. Then, they use the results returned in the previous step to
derive the column class. Afterward, the results obtained from the annotated class
make it possible to improve the previous annotations of the cells and to reduce
further annotations. Overall, the process repeats until the final optimal annotation
cell and column is obtained.

MTab:
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(Nguyen et al., 2019) presents MTab, which combines the voting algorithm and
the probability models to solve two major problems: (a) DBpedia lookup does not
usually get relevance entities for non-English queries and (b) mapping cell values
to corresponding values in a KG is less effective because the corresponding value
in KG is rarely equal with a query value.

Actually, MTab consists of seven steps as shown in the framework illustrated

Figure 2.5: Column Type Prediction task

in figure 2.5 These steps can be summarized in three parts:

• The first part (step 1) focus on data preprocessing such as: Text decoding,
Language prediction, Data type prediction, Entity type prediction and Entity
Lookup parameters.

• In the second part; first (step 2) for each cell, ranking list of candidate enti-
ties is estimated based on multiple lookup methods. These entities are scored
based on their ranking. After scoring, these scores are normalized and asso-
ciated as probabilities of entities. Second, (step 3) columns are categorized
to Numerical columns and Textual columns. For numerical columns, authors
use EmbNum to find relevance relations, then, they use DBpedia ontology to
infer types based on “Domains” of relation. For textual Columns, the can-
didate type is determined using the candidates types of numerical columns,
entity lookup types for all column cells, types of SpaCy entity type for all
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column cells and the Normalized Levenshtein distance between table header
and DBpedia classes. Thus, for each candidate type a normalized probability
is associated. Third, (step 4) to estimate the relation candidate between two
columns, authors calculate the relation scores of two cells in the same row
and then aggregate these scores for all rows.

• In the last part, (step 5) authors re-estimate entity candidates for table cells
and select the entity with highest estimation score as annotation. (step 6
and step 7) They also re-estimate type and relation candidate with majority
voting based on the results of cell annotation.

T2K Match:

(Ritze et al., 2015) proposed T2K Match, a specialized web table to knowledge
base matching system which performs entity-level and schema-level matching .In
other words, T2K Match links web tables to classes, rows to entities and columns
to properties from a knowledge base.

• First of all, T2K Match selects the most unique text column to be the entity
label column i.e., the most distinct column that includes the names of the
entities described in the table.

• Afterwards, similarity measures are determined between the Web Tables and
DBpedia in order to correspond between the cells of the table, the entities
and the properties of the knowledge base. Then these matches are used to
determine the majority class of the entities in the web table.

• Last, entity and property correspondences are revised iteratively and the
classes that do not belong are deleted to obtain a final mapping.

Efthymiou et al. 2017:

(Efthymiou et al., 2017) adopt an unsupervised hybrid annotation method based
on three alternative approaches for matching entities whose contextual informa-
tion may vary from poor (in Web tables) to rich (in KBs):

• Lookup-based method: For each cell in the label column of the web ta-
ble, this method perform several lookup service on an index created from
label and description properties of all entities in the target KB and from the
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returned candidates, a unique entity is mapped to each mention in the web
table based on the minimal entity context provided in the web table, frequent
types as well as the binary relation between entity described in a the table
row and entity mentioned in the same row. However, if no results were re-
turned, search for any entity with a similar label that having the extracted
relation with entity in the same row.

• Entity Embeddings Method is an instance of global disambiguation tech-
niques family, assuming that the entities that appear in sentences tend to form
coherent sets with respect to the topic. This assumption also applies to enti-
ties described in tables, where columns are usually strongly typed and hence
coherent at least with respect to types and topics.
Over all, consider only columns with text values, and regard each string value
as an entity mention e. First, disambiguate the entities of all rows, using the
contents of the label column cells as mentions and using the rest of row as
context. Second, create a disambiguation graph of all the candidates entities
for all the entities mentions. Third, add a directed edge weighted with nor-
malized cosine similarity between each pair of entities not candidates for the
same mention. Subsequently, create an assignment for each node by apply-
ing a weighted PageRank algorithm to calculate the relevance of each node
and finally, select the nodes with the highest score from the set of candidates
for each mention.

• Ontology Matching Method: Here, each row of the table describes a real-
world entity and each column represents a property, with the exception of the
label column, which defines the class of the table. All the entities in the table
are instances of this class. During a first scan, identify columns with entity
references and perform a small number of lookups in FactBase using the
first few values from these columns. In a second scan, create a new instance
of the table class for each row, whose property values are the cell contents
of this row for the respective column. Finally, Call an ontology matching
tool with the table ontology and the DBpedia ontology after blocking (a pre-
processing step of candidate mappings selection), as input, and return the
mapping results.

Authors also proposed an hybrid method for Web table annotation. They exploited
the benefits of combining Lookup-based method and Entity Embeddings Method,
as following:
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• Hybrid I : If FactBase lookup method provides a mapping for the entity of
a row, then this hybrid method keeps this mapping. Otherwise, it uses the
annotation provided by the embeddings for this row, if one exists.

• Hybrid II : Same as Hybrid I in inverse order, i.e., using the embeddings
first, before Lookup-based method.

2.4.2 Supervised Learning based approaches

Recently, works has tended to apply supervised learning to the semantic table an-
notation process where supervised task infers outputs data from labeled training
data. However, the majority of these works is introduced as ”semantic labeling”
(Pham et al., 2016; Ramnandan et al., 2015) and generally focus on the Named
Entity column annotation.

DSL:

DSL (Domain-independent Semantic Labeler) (Pham et al., 2016) is a tool for
precise annotation of columns using similarity measures and machine learning
techniques. In this system, the first step is to select a set of candidate classes from
the ontology and training data which is a table corpus with the columns already
labeled. Afterward, a set of similarity metrics can be applied to these annota-
tions along with the column cell values to obtain feature vectors. Authors exploits
5 similarity metrics which are: attribute name similarity, standard Jaccard simi-
larity, TF IDF cosine similarity, distribution similarity and histogram similarity.
After calculating the similarity for each candidate classes, 2 classifiers (Logistic
Regression and Random Forests) are trained per column class in the training data
set to choose the best classifier for semantic labeling. However, Logistic Regres-
sion achieves higher performance than that of Random Forests.

TabEL:

TabEL is a supervised machine learning approach for Semantic table interpre-
tation proposed by (Bhagavatula et al., 2015). This system takes the problem of
annotating tables as an entity linking task which aims to match each value cell
in the table to the concept of ontology. Hence TabEL based on three main steps
described as follows:
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• Mention identification: select potential mentions that can be linked to their
referent entities in the knowledge base by calculating the prior probability
for a given cell and a concept estimated from hyperlinks on the Web and in
Wikipedia.

• Entity candidate generation: For each potential mention, a set of most re-
lated candidate entities is generated also using thus calculated probabilities.

• Disambiguation: employs a pre-trained Iterative Classifier with several fea-
tures that ranks the candidates by the maximum likelihood and jointly dis-
ambiguates all mentions in a given Web table.

TabEL relies on a greedy approach which is time consuming and hard to imple-
ment. Indeed, the TabEL system outperforms all EL systems for texts, authors do
not conduct any experimentations with El systems dedicated for tabular structures.
Therefore, the source code of TabEL is not yet released and available for testing.

2.5 Conclusion

In this chapter we introduced the metadata information of a Web Table. Further,
we presented the three main tasks of semantics table annotation : Entity Linking,
Column Type Prediction and Relation Extraction. Finally, we have listed several
related works and we have classified these works into two types of approaches:
Search based approaches and Supervised Learning based approaches.



Chapter 3
Contributions

Introduction

In this chapter, we introduce our novel approach for Semantic Table Interpretation
(STI) for relational tables. It performs all the three matching tasks continuously:
column type detection, entity linking and relation extraction task. Our approach
is an unsupervised method which leverages the context of Web tables to better
capture their semantics. Our approach exploits mainly distributional vector repre-
sentations of words and entities combined with a collective strategy to infer dis-
ambiguate and elicit the semantics behind a Web tables. This chapter consists of
two section. The section 3.1 introduces a problem formulation of the STI process.
Section 3.2 explains in further details our STI approach.

3.1 Problem Formulation

The semantic table interpretation task takes as input a relational web table and a
target knowledge base (KB), and generally performs three sub-tasks as follows:

1. Entity linking (EL) is the task of matching mentions (phrases) of the cells
of a web table to their referent entity in a given KB.

2. Column type identification is the task of associating to a given tables’s
column a KB type of entities. In our approach, we rely on DBpedia ontology

28
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concepts for column type annotation.

3. Relation extraction is the task of associating a pair of columns in a table
with the KB relation or property that holds between each pair of entities in a
given row of two columns.

In our work, we focus on semantic interpretation of relational tables. Typically,
each row in a relational table describes a real-world entity, while each column
contains the value of the corresponding property/predicate in a given KB. The KB
contains information related to these entities and values. Hence, it is essential
to understand the overall theme and context of a given web tables for correctly
matching web tables data on to the KB.

For any relational table T = (M,H) as found on the Web, where M =< m1,m2, ...,ml >

is a sequence of column mentions, H =< h1, h2, ..., hn > is a sequence of head-
ing labels. Each mention mi in M is characterized by its surface form and its
local context Cxt(mi). Given a knowledge graph K containing a set of entities
< e1, e2, . . . , e j >, a set of properties/classes < c1, c2, ..., ck > and a set of proper-
ties/predicates < p1, p2, ..., pl >. While entity linking aims to identify and assign
each potential mention mi in cells of T to a correct entity e j in K, class matching
and relation extraction aims to match tables with properties of K (ck and pl, re-
spectively).

Before mentioning the different matching steps of our approach, we examine the
challenges of semantic annotation of web tables:
Lexical Variations. An entity often has several forms of mention (surface forms),
like abbreviations (United States of America vs. USA), shortened forms (Osama
Bin Laden vs. Bin Laden), alternate spellings (Osama vs. Ussamah vs. Oussama),
and aliases (Osama Bin Laden vs. Sheikh Al Mujahid).

Entity Ambiguity. is the most important challenge to the EL problem: single
mention can be matched to multiple KB entries. For instance, we can find 21 per-
sons named ”Adam Smith” in DBpedia.

The types of the entities mentioned in a table are not known beforehand and they
can correspond to none or to several types in the knowledge graph.
The columns to be used to check for matches may differ from one table row to
another.
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The surface form of a mention in a Web table and its corresponding entity in a
given KB, may significantly differ.
In recent years, a set of systems for the interpretation of Web tables has been de-
veloped. Most of these systems focus on a specific task, e.g., (Efthymiou et al.,
2017; Bhagavatula et al., 2015; Luo et al., 2018) on the entity linking, the method
of (Kim et al., 2018) on the property matching and the approaches introduced
by(Chen et al., 2018b; Fetahu et al., 2019) on the class matching task. Few ap-
proaches focus on all the three matching tasks like TableMiner+ system (Zhang,
2017) and T2K match sytem (Ritze et al., 2015).

Previous works in Named Entity Disambiguation (NED) are generally based
on the local contexts of the entity mentions. In recent years, some of the tabular
annotation systems mainly use the coherence between candidate entities to im-
prove the efficiency of the disambiguation task (Zwicklbauer et al., 2016) (Phan
et al., 2018). These approaches are well known as collective because they aim to
jointly resolve several mentions by linking them to their associated entities in a
knowledge base.
Based on this new idea, our proposed approach for semantic tables interpretation
adopts a collective strategy similar to (Zwicklbauer et al., 2016) and takes into ac-
count the richness of the context to improve the quality of the web tables matching
process.

3.2 A Holistic Approach for Semantic Interpreta-
tion of Relational Web table

In this Section, we describe our approach for semantic annotation in web tables
using the DBpedia Knowledge Graph. It performs all the three matching tasks
continuously: Column Type Annotation(CTA), Entity Linking in Web tables (EL)
and Columns Predicate Column (CPA) tasks. Our approach exploits mainly vector
representations of words and entities on all three matching tasks and based on
collective strategy which combines local and global features to infer entity linking
decisions.
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Rank Title Year Director’s
1 The godfather 1972 Francis Ford Coppola
2 Citizen Kane 1941 Orson Welles
3 Casablanca 1942 Michael Curtiz
4 Lawrence of Arabia 1962 David Lean

5
dr. Strangelove or: how
I learned to stop worrying
and love the bomb

1964 Stanley Kubrick

6 Apocalypse now 1979 Francis ford Coppola
7 The godfather: part ii 1974 Francis ford Coppola

Table 3.1: An example of a Web table describing movie titles

3.2.1 Pre-processing

This section performs some pre-processesing steps that are applied on the web
tables and aims to prepare the data inside the table. Indeed, this step aims to
normalize and to clean the string values of data in order to avoid errors related
to word ambiguity and to obtain good results in the KB lookup step. In the first
instance, web tables contain values that can include HTML tags like the entity
used to represent a non-breaking space ”&nbsp; ” these HTML tags need to be
cleaned. Furthermore, we remove special characters like parentheses, punctuation
or slashes and additional whites-paces from cells in web tables and we transform
text into lowercase.

3.2.2 Column Type Annotation

Column Type Annotation (CTA) aims to associate to each table’s column a se-
mantic type/category of the KB. In our approach, it is the task of matching the
dominant type of cells in a target column to a recognized knowledge graph con-
cept. For example, the column 2 of Table 3.1 is annotated with dbo : Film and
dbo : work, two classes of the Dbpedia Ontology. The CTA tasks is crucial for
the remaining two table annotation tasks, namely entity linking (section 3.2.3) and
Columns Predicate Annotation (3.2.4).

In our work, we perform the CTA task by combining KB lookup and word
embeddings representation. Hence, our CTA task combines several features ex-
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tracted from the context of the Web table. CTA Features cover table metadata
such as table name, header of columns and content cells (the set of mentions exist
in the column of a Web table).

Figure 3.1: Running example of the Column Type Annotation task

First, we rely on a KB lookup method to associate to each mention of a given
column a set of candidate classes collected from the DBpedia ontology. Hence,
candidate classes are ranked according to a majority vote.

For each candidate class, we calculate a confidence score depending on three
features: the column context which is represented by of all mentions in the same
column, the column header name, and the majority vote score estimated based
on the frequency of occurrences of each candidate class. We combine frequency,
lexical and semantic features in the following simple formula:

Con f S corec = α ∗

(
f req(c)

nbC

)
+ β ∗CCscore + γ ∗ lev(hn, clabel) (3.1)

Where f req(c)
nbC

is the majority vote of each candidate class determined by the fre-
quency of this class divided by the total number of candidate classes, lev is the
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levenshstein similarity that represents the syntactic similarity between both col-
umn header name and DBpedia ontology class surface form and CCscore is the
semantic similarity between the column header name (hn) (if it exists) and the
candidate class label (clabel).

CCscore =

{
Cos S im(hn, clabel) if header is available
Cos S im(ml, clabel) else.

(3.2)

Voting with majority can contribute to a highly confident prediction of CTA. Re-
ferring to the example of the table 3.1, the KB lookup method for the mention
”Casablanca” should return dbo : City DBpedia ontology class as semantic type
instead or in addition to dbo : Film class. Nonetheless, the dbo : City concept
will be eliminated by majority vote score according to our confidence score. Note
that the semantic similarity determined by the cosine similarity between both vec-
tor representations of the column header cell and the candidate class. However,
only relying on the header cell results is insufficient because the header is not al-
ways available and arbitrary terms can be used. Therefore, if there are no headers,
CCscore calculated using the cosine similarity between the mention label (ml) and
the class surface name(clabel), after representing each cell value in the target col-
umn with a vector using word embeddings. Finally, the candidate class with the
highest score will be selected as the best column type.

3.2.3 Entity Linking in Web tables

The Entity Linking (EL) task aims to match each mention of a table cell with KB
entities. The first step allows to associate to each table mention a set of candidate
entities. The second step disambiguate entities by combining a graph-based col-
lective strategy and distributional vector representations (a.k.a. embeddings) to
select the most suitable entities. Figure 3.2 summarizes the different steps of our
EL task.

Candidate entities generation

The EL task starts with a candidate generation step. Thus, for each mention in a
table cell, we need to determine an initial set of candidate entities from the given
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Figure 3.2: Approach workflow

KB. Since the candidate set can be large, we apply a feature-based ranking proce-
dure based on contextual and string similarities calculated between each mention
mi and each entity ei, j in the candidate set Emi , in order to filter the most potential
candidates and reduce the number of candidates. Hence, we compute a score for
each candidate entity based on the following three similarity values:

• Semantic similarity between a mention mi and an entity ei, j calculated as
the cosine distance between their vector representations as word and entity
embeddings which are n-dimensional vectors of words representing entities
in the target KB.

• Contextual information between mention context and the description of the
candidate entity extracted from the target knowledge base, the context of a



Section 3.2 – A Holistic Approach for Semantic Interpretation of Relational Web table35

mention mi represents all the mentions that exist in the same row and column
of the target mention.

• String similarity represents the syntactic similarity between the string value
of the mention mi and the rdfs:label value of the entity ei, j.

Thus, we keep only the candidate entities having a similarity score exceeds the
CandidateFilter threshold. Once the candidate entities have been filtered using
the similarity metrics, a set of candidate entities is associated for each mention mi.

Running Example: To illustrate the detail of the candidate generation step,
table 3.1 serves as an example of a movies web table1 that contains a list of films
with their titles, release year and director, as well as a ranking attribute. The
header row gives the attributes labels of the described entities. Each row in the
table describes a real-world entity (e.g., the second row describes The godfather
film), and each column contains the value of the corresponding property, e.g.,
(”Year”,1972), (”Director”,Francis Ford Coppola). First, we predict the class of
each column table as mentioned in section 3.2.2. Then, we rely on the DBpedia
lookup service which can be used to search for DBpedia URIs by associated key-
words. Therefore, the latter takes as input a string value for which a DBpedia URI
must be found, a DBpedia class of the column to which the string value belongs
as well as the maximum number of results that we want to return.

Example 3.1. For the example Table 3.1 , the CTA method assign the [dbo:Film,
dbo:Work] classes to the “Title” column and the [dbo:Person, dbo:Agent] classes
to the “Director’s” column, however the other columns have no matches detected
in the DBpedia ontology. Then, using the returned column classes and the values
of the table cells, a set of possible candidate entities for each mention is generated
using the DBpedia lookup method. Taking for example the mention “Lawrence of
Arabia” which is the intersection of line 4 and column 1, it returns the following
list of candidate entities:

• Label: A Dangerous Man: Lawrence After Arabia
Uri: http://dbpedia.org/resource/A Dangerous Man: Lawrence After Arabia

• Label: Lawrence of Arabia
Uri: http://dbpedia.org/resource/Lawrence of Arabia

1The table originates from the T2D gold standard: 58891288 0 1117541047012405958
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• Label: Lawrence of Arabia: The Authorised Biography of T.E. Lawrence
Uri: http://dbpedia.org/resource/Lawrence of Arabia: The Authorised Bio-
graphy of T.E. Lawrence

• Label: Lawrence of Arabia (film)
Uri: http://dbpedia.org/resource/Lawrence of Arabia (film)

• Label: Saint Lawrence River
Uri: http://dbpedia.org/resource/Saint Lawrence River

• Label: Saudi Arabia
Uri: http://dbpedia.org/resource/Saudi Arabia

• Label: T. E. Lawrence
Uri: http://dbpedia.org/resource/T. E. Lawrence

This example shows that many lookup results can be returned for the query
”Lawrence of Arabia”, but we want to select a single entity of an acceptable type
(e.g., Film). To achieve this goal we need to find a way to deal with massive
amounts of candidates per mention. Hence, to keep the list of candidates short
and to improve efficiency, we eliminate noisy candidates by assigning a score
for each candidate; this score presents the similarity between the mention and
each entity in the list of candidates. The next step which is the collective-based
Entity Disambiguation in web tables aims to select the most suitable entity for
each mention.

Collective Strategy for Entity Disambiguation

Our proposed Entity Disambiguation approach is similar to that proposed in (
Zwicklbauer et al., 2016) which is a collective EL approach for text disambigua-
tion. Therefore, in our approach, we examine the relatedness of entities using a
coherence Graph such as candidate entities as vertices and edges reflecting the
semantic similarity between each pair of entities that correspond to two different
mentions in a Web Table i.e., there is no edge between the candidate entities of
the same mention. The intuition behind this approach is that entities in the same
column should be closed in the embedding space as they share semantic charac-
teristics.

In the disambiguation graph, there are only weighted directed edges between the
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nodes (entities). These edges have the following format (e1; e2; etp(e1; e2)) where
etp(e1; e2) represents Entity Transition Probability (ETP) which describes the like-
lihood to walk from node e1 to node e2. In our case, we use the cosine similarity
to measure the ETP between two non-zero d-dimensional vectors corresponding
to the target entities (e1, e2). Cosine Similarity is one of the most frequently used
metrics for words similarity Moreno et al., 2017. Given two entities vectors ~Wvec1

and ~Wvec2, the cosine similarity is calculated as follows:

Cos S im( ~Wvec1, ~Wvec2) =
~Wvec1, ~Wvec2

‖ ~Wvec1‖, ~‖Wvec2‖
(3.3)

where the returned result of Cos S im varies between -1 and 1.
Despite the performance of cosine similarity in semantic measurement, the qual-
ity of the results may differ depending on the method used to determine the vector
representations of terms. Indeed, there are a lot of techniques used to mapped
terms to n-dimensional vectors like One-hot vector representations which gener-
ally do not provide any information on the meaning of term (Cerda et al., 2018)
and TF-IDF (term frequency- inverse document frequency) technique where TF
is how often the term appears in the document whereas IDF is the number of doc-
uments in which the term appears(Robertson, 2004). However, word embeddings
has proven to be one of the most popular and beneficial methods in several works
(Efthymiou et al., 2017; Ritze et al., 2015). With Word2Vec framework, words are
represented in a continuous vector space by associating related words to relatively
close points to display their semantic similarity.

In order to learn word embeddings, (Mikolov et al., 2013) proposed two popu-
lar models which are Continuous Bag of Words (CBOW) that used to predict a
word using a set of words constituting its surrounding context and Skip-gram that
used to predict the context of each word. Figure 3.2 shows the architecture of the
CBOW and Skip-gram models.

As illustrate in figure 3.2, the CBOW model predicts the current word w(t) using
its context w(t - n), ...,w(t - 2), w(t - 1), w(t + 1),w(t + 2)...,w(t + n) which is a set
of words in the form of vectors, while the Skip-gram model predicts each word in
the context using the word w(t).

In our work, the similarity measure calculated using neural network language
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Figure 3.3: Architecture of CBOW and Skip-gram models

models which are the word and entity embeddings.

ET P(e1, e2) = cosine similarity(embedding(e1), embedding(e2)) (3.4)

The details of the collective disambiguation strategy will be described in the fol-
lowings steps:

1. Measure the local similarity score between the mention mi and the entity ei, j

(as described in the candidate generation step)

2. Estimate the global coherence score between each two entities based on the
assumption that two entities are related if their vector embeddings are highly
close.

3. Create a weighted directed graph G=(V , E) where V is the set of candidate
entities while E represents the edges between every pair of entities weighted
by the ETP value.

4. Given the weighted graph, we apply a Personalized PageRank (PPR) algo-
rithm to determine a PPR score for each entity candidate.

Local similarity score φ(mi, ei, j):

We adopt the similarity score as introduced in the candidate generation step as
a local similarity score between a mention mi and the candidate ei, j. Therefore,
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the local similarity score determined using three different metrics, including the
contextual similarity CxtS im(Mi, Ei) , where Mi is the set of all mentions appear-
ing with mi in the same row and which represents the context of the target mention
mi while Ei is the set of words appearing in the short description of the entity ei, j

extracted from the knowledge base which used as a context of the entity ei, j. The
String Similarity score S S im(mi, ei, j) whereas we apply two different approaches
to calculate S S im(mi, ei, j) which are the levenshtein distance and the jaccard sim-
ilarity, and finally the semantic similarity S emS im(mi, ei, j) between the candidate
entity and the mention.

φ(mi, ei, j) = α∗CxtS im(Mi, Ei)+β∗S emS im(mi, ei, j)+λ∗S S im(mi, ei, j) (3.5)

We exploit the cosine similarity measure to estimate the Semantic similarity
S emS im(mi, ei, j) between the mention mi and the entity ei, j but here we adopt both
word and entity embeddings since our experiments shows that joint modeling of
words and entities in the same continuous space improves the quality of word and
entity embeddings and benefits the task of entity disambiguation. Let T denote
the target token where T=”Saudi Arabia”, we can consider T either as a set of two
different words (e.g., Saudi, Arabia) or as an ENTITY (e.g., [Saudi Arabia]).

Global coherence score (ei , e j):

Several previous studies in EL exploit the relatedness measure between the entities
to generate a disambiguation context. Thus,in comparison with previous work, in
our case, we use both word and entity embeddings similarities because the integra-
tion of entity embedding to estimate the semantic coherence between the concepts
proved effective for entity disambiguation in recent works (Efthymiou et al., 2017,
fthymiou et al., 2017).

ϕ(ei, e j) = a × [S im(emb(e1), emb(e2))] + (1 − a) × S ameclass(e1, e2) (3.6)

The global coherence score is computed using a cosine similarity between vector
representations of two entities as well as a simple function called S ameclass(e1, e2)
which aim to improve the score value if the two target entities have the same class.

Collective Disambiguation Strategy

In our approach, we create a weighted and directed graph with edges connect-
ing each two entities refereed to two different mentions. The edges are weighted
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by the score of the global context matching ϕ(ei, e j) which describe the ETP of
walking from one node to another. An example of an entity-entity disambiguation
graph is illustrated in Figure 3.4 .

Algorithm 3.1 Graph-based EL in web tables
Input: N mentions(m1, ...,mN) each mention mi has a list of candidate Entities
CEmi = [e1, ..., e|CE|]
Output: Γ∗ = (e1, ..., eN) with ei being the entity matching to mi

Begin
// Local similarity candidate Filter

for mi ∈ M and |CEmi | >= 1 do
FinalCan=φ

if localSimilaityScore(mi, ei) >= thresholdS imm,e and classei , φ then
FinalCan= FinalCan +ei

if FinalCan== φ then
CEmi ← NIL

else
CEmi ← FinalCan

// Create a Weighted Direct Graph WDG

nodes = φ

for mi in M do
for e j ∈ CEmi do

nodes← nodes + e j

WDG=Create DiGraph(nodes, GlobalSimilarity(nodeei , nodee j))
Matrix = Convert to Matrix(WDG)
// Apply Personalized PageRank PPR

for mi in M do

PPR= Personalized PageRank(Matrix)
Rank entities
if CS mi >= 1 then

select for each mi the entity with the highest score

else
mi annotate with NIL
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Figure 3.4: Example of an Entity-Entity disambiguation graph;
Where both ”Casablanca” and ”Lawrence of Arabia” mentions have three pos-
sible candidates, while ”Michael Curtiz” mention has four possible candidates.
The weight ϕ(ei, e j) edges is the cosine similarity between the vectors represen-
tations of the candidates entities ei, e j as well as the S ameclass(e1, e2) binary
function which aim to improve the score value if two target entities ei and e j have
the same class.

Based on the disambiguation graph, we perform a random walk simulated by a
PageRank procedure which aims to encode the structure of the graph in the form
of a transition matrix in order to determine a ranking list of relevance scores for
each entity candidate. Depending on this list, our approach decides which entity
candidate is the correct entity that corresponding to the target mention.

In our approach, we use Personalized PageRank (PPR) Huang et al., 2014 which
is more general than PageRank version. The personalized PageRank based on two
parameters, the jumping constant α and the seed s. In fact, a seed can be consid-
ered as either a vertex or a probability distribution on vertices i.e. a probability
distribution on a seed node set which serves as the personalization context. On
this way, given a weighted graph G(V, E), a damping factor α and a set of nodes
S ∈ V denoted as the seed vector ~s, if we denote the Personalized PageRank (PPR)
scores of the nodes in V with a vector π, then

π = (1 − α) ∗ s + α ∗ TG ∗ π (3.7)
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where TG denotes the transition matrix corresponding to the graph G (and the
underlying edge weights). s is a re-seeding vector, such that if vi ∈ S , then ~s[i]
= 1
‖S ‖ and ~s[i] = 0, otherwise. Therefore, rather than leaping to a random node in

V with probability α, the random walk jumps to one of the nodes from the set of
seed S.

3.2.4 Columns Predicate Annotation CPA

The structure of a web table inherently provides high quality semantic relations
between its columns. However, extracting these relations is a challenging task
since it requires the identification of unique structural information of each table. In
the perspective of the knowledge base, these relations are considered as properties
or attributes.
In general, every relational web table has a subject column which is a key of
the web table and hence every other column represents a binary relation with the
subject column. Within this context, we aim to identify the semantic relations of
the subject column in a table with other columns (both Named entity and literal-
columns) in the same table using the linkable table ,in others terms, with the help
of entity linking and class matching tasks, we turn to determine which relation
might exist between the subject column and the attribute columns in order to set
the overall meaning of the table.

Subject Column Detection SDC

Subject column, also called entity label column or key column, contains the names
of the entities described by the web table. Assume that each web table has exactly
one subject column, to detect the latter we apply several heuristic as shown in
Algorithm 2.
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Algorithm 3.2 Pseudocode to find the subject column
SubjColm= None
// SubjColm is the most unique column in the table

for c in C do
if data type(c)==str then

if len(mention)>=3 and len(mention)<=200 then
if ”name” or ”title” in header(c) then

if confidenceScore(c) > = 0.3 then
SubjColm= c

else if confidenceSc(c) == max(confidenceSc(C)) then
SubjColm= c

First of all, the column needs to be of data type String and its cells have an
average length between 3 and 200 characters. Since the table header is not always
available and that arbitrary terms can be used, we cannot rely solely on the header
to detect the subject column. To the best of our knowledge, we calculate a confi-
dence score which is defined as the ratio of annotated mentions to all mentions of
a column, reduced by the ratio of non-annotated mentions, e.i. mentions mapped
to value ”NIL” :

con f idenceS core(c) =
#annotatedMentions

#totalMentions
(3.8)

The confidence score is important for detecting the correct subject column. It re-
wards columns with many annotated cell and penalises columns with many ”NIL”
annotations. Hence, two rules decide which column is selected as subject column:
(1) If the column header contains either the term “name” or “title” and the confi-
dence score above 0.3, this column chosen as subject column; (2) otherwise, the
column with the highest confidence score is chosen and in case of a tie, the left-
most candidate is chosen.
Note that the purpose of subject column detection is not limited to identify the
main class of web tables, but also used by later processes such as columns predi-
cate annotation.

In our case, we firstly begins by generate a set of candidate properties using
the following three matchers for the columns predicate annotation task:
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Figure 3.5: A running example of the CPA task

a) Outgoing-Properties
We introduce a subject column based search mechanism for the property selec-
tion. Indeed, for each entity in the subject column, we query the DBpedia knowl-
edge base to find all the possible relationships emerging from that entity. As
mentioned in the SPARQL query given in Listing 3.2, we ask for all properties
in the DBpedia knowledge base that corresponds to the relations that a subject
column expect from the other columns of the table. For example, the subject col-
umn c0 of table in Figure 3.7 can have the outgoing properties dbp.areaTotal,
dbp.averageDepth, dbp.elevation, dbp.length, dbp.location...

1 PREFIX dbr: <http://dbpedia.org/resource/>

2 select distinct ?predicate ?object where{

3 %URI% ?predicate ?object .

4 }

Listing 3.1: SPARQL query used in the Outgoing-Properties extract

b) Incoming-Properties
Incoming-Properties refers to all properties coming into all entities in the Named
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Entity column except the subject column, in the perspective of other entities. it
define the behavior of an entity in relation to all subject entities. Given e is an
entity of a NE-column is derived from the triples containing e as object, denoted
by <?sub ject, ?predicate, e >. For an example, column c1 from the above table
shown in figure can have the Incoming-Properties dbp.location, dbp.deathPlace,
dbp.birthPlace.

1 PREFIX dbr: <http://dbpedia.org/resource/>

2 select distinct ?subject ?predicate where{

3 ?subject ?predicate %URI%.

4 }

Listing 3.2: SPARQL query used in the Incoming-Properties extract

c) Extracted-Properties
Here, we aim to extract all possible relations between a subject column and a
NE-column. For this purpose, we query Dbpedia for the properties between all
pairs of entities for each row in the primary and secondary columns, as shown
in tuple illustrate in Listing 3.4 < %URI1%, ?predicate,%URI2% >, where
%URI1% and %URI2% are entities in the subject column and the NE-column
respectively. As instance, the Extracted-Properties between column c0 and col-
umn c1 are: dbp.location

1 PREFIX dbr: <http://dbpedia.org/resource/>

2 select distinct ?predicate where{

3 %URI1% ?predicate %URI2% .

4 }

Listing 3.3: SPARQL query used in the

At the end of the properties extraction process a set of candidate properties is
generated. In next step, we rank these candidate properties by importance in order
to determine the best possible candidate relation between two given columns. To
do so, we assign a score for each candidate relation < sub ject column, property,
ob ject column, score > by utilizing the following metrics:

• Similarity. For each candidate in the Outgoing-Properties set, we compute
a string similarity(Levenshtein) and a cosine similarity(words embeddings)
between the name of the property candidate and the header text of the object
column (if exists).
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• Property validity. We determine the validity of a property by checking
whether a candidate property is apparent in both the outgoing-properties and
in the incoming-property. If so, a property validity function returns 1 or
0 otherwise. The purpose of this function is to identify one or more valid
properties that can link the subject column to the object column.

• Property confidence function. Specifies how likely the relation holds. This
function based on the frequency of occurrences of each candidate in the
Extracted-Properties. It varies between 0 and 1 while 1 declares that the
property of the greatest frequency is most likely to hold.

Finally,we aggregate all metrics listed above to predict a final score S p for each
candidate property, i.e.,

S p = α ∗ S im(p, hc) + β ∗ Vp + γ ∗Con fp (3.9)

Where S im include the Levenshtein similarity and the cosine similarity between
the header text of a column hc and the name of a candidate concept p, Vp is the
validity function of p and Con fp is the Property confidence function.
Finally, the candidate property with the highest score S p is chosen as the best
binary relation associating a subject column with a secondary column.

3.3 Conclusion

In this chapter, we introduced our proposed approach for matching web tables to
knowledge bases. Indeed, this chapter gives all the detailed steps of our approach.
First, we described how to clean up a web table, then we show how we generate
the candidates entites from DBpedia knowledge graph. Last, we described the
main step of our approach: Entity Disambiguation step from which we created
the disambiguation graph and we applied a personalized pagerank (PPR) to select
the correct entity for each mention in the web table.



Chapter 4
Evaluation

Introduction

In this chapter, we will experimentally evaluate our method for web tables anno-
tation. First, we will present our experimentation in section 4.1. Second, we will
present the results for each matching task and we analyze the utility of different
features that serve as input for these tasks by applying different combinations of
features.. The last section aims to compare our results with other approaches.

4.1 Experiments

Our matching method is fully implemented in python. As input for the matching
process, We exploit DBpedia as knowledge graph and T2D gold standard (version
1) as datasets of web tables. For more details, this section presents the datasets
and the knowledge graph used in our implementation as well as the practical steps
necessary to realize and evaluate our approach.

47
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Table 4.1: Characteristics of the T2D gold standards.

Name Nb.tables
Rows per table Columns per table

Structuredness
min max avg min max avg

T2D 233 6 586 123 3 14 4.95 0.97

4.1.1 Datasets:

In our experiments, we use the tables of the first version T2D-instance gold stan-
dard1 which contains 233 Web tables, with manual annotations of 26124 entities
extracted from the 2014 version of DBpedia.

T2D has an average of 123 rows per table, and 4,95 columns per table. It is
highly structured (0.97), meaning that very few cells are empty in tables. Table
4.1 summarizes the main features of the T2D gold standard.
The T2D gold standard includes cross-domain tables from multiple websites cov-
ering a wide range of challenges. Figure 4.1 shows the distribution of tables per
category.

Figure 4.1: The distribution of tables per category

4.1.2 Knowledge graph

As knowledge graph, we decided to use Dbpedia knowledge base which is one of
the most common knowledge bases. DBpedia is a very popular knowledge graph
that is located in the center of the LOD cloud because it is highly interconnected

1http://webdatacommons.org/ webtables/goldstandard.html
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with many other datasets in the Semantic Web. Furthermore, The DBpedia knowl-
edge base presents major advantages compared to the existing knowledge bases: it
covers current areas and is known as the cross-domain knowledge base; it evolves
automatically as Wikipedia changes, and it is truly multilingual. Indeed, DBpe-
dia provide 125 languages versions which describe together 38.3 million things.
Especially, the English version of the DBpedia knowledge base describes 4.58
million things2 .
There are different ways to extract knowledge from dbpedia. In our implementa-
tion we choose to work with dbpedia API to generate a set of candidates entities
for each string mentioned in a web table.

4.1.3 Wikipedia2Vec: Pre-trained model of Words and Entities
Embeddings

We base our work on semantic embeddings method which uses distributed repre-
sentations (embeddings) of the rich entity context in a KB to estimate the semantic
similarity between entities.

Several neural network language models have been adopted in recent years, one
of the most popular is word2vec that embeds words in a lower-dimensional vector
space. It is a two-layer neural networks that can works with two model architec-
tures: CBOW model and Skip-Gram model.

To the best of our knowledge, we use Wikipedia2Vec, a model for obtaining em-
beddings of entities and words simultaneously. The strong point of this method is
that it based on word2vec and aims to jointly place words and entities in the same
continuous vector space. Indeed, similar words and entities are close together in
the same vector space (Yamada et al., 2018). This is what allows us to easily cal-
culate the cosine similarity between any pair of items (entity-entity, word-entity
or word-word).

However, Wikipedia2Vec has been used in several recent works such as: Entity
linking (Chen et al., 2019), Named entity recognition (Lara-Clares and Garcı́a-
Serrano, 2019) and Entity typing (Yamada et al., 2018).

2http://wiki.dbpedia.org/about
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4.2 Evaluation

In this section, we analyze the results achieved by our system as well as the use-
fulness of the various functionalities which serve as input for the mapping of web
tables to knowledge bases.

4.2.1 Evaluation metrics

In literature, web table annotation systems are mainly evaluated with effectiveness
measures. For which, subject column detection is evaluated by Precision and
the confidence of the three annotation tasks of Semantic Table Interpretation are
evaluated using the standard Precision, Recall and its combination F-measure.
These measures are calculated based on the following formulas:

Precision =
T P

(T P + FP)
(4.1)

Recall =
T P

(T P + FN)
(4.2)

F − measure =
(2 ∗ Precision ∗ Recall)

(P + R)
(4.3)

While TP refers to the number of true positives which are the set of correctly
annotated cells, FP represents the number of false positives which are the set of
mentions that are annotated with wrong entities where the correct entity exists
among the candidate set and FN the number of false negatives: the set of mentions
that are annotated with wrong entities where the correct entity does exists among
the candidate set. Note that the precision of the subject column calculated by
dividing the number of subject columns correctly determined by the number of
total tables.

4.2.2 Experiment Results

In this section, we evaluate the overall performance of our approach. Table 4.2
illustrates the results of matching the ambiguous tables of T2D to the DBpedia
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Table 4.2: Results of the three matching tasks

Task Precision Recall F-measure
CTA 0.84 0.91 0.87
EL 0.87 0.86 0.87
CPA 0.69 0.71 0.70

Table 4.3: Results of the CTA task using different features

Method Precision Recall F-measure
String Similarity 0.65 0.34 0.45
frequency-based 0.81 0.78 0.79
Embedding-baseline 0.83 0.81 0.82
All 0.90 0.85 0.87

knowledge base using our approach. For the subject column detection, an F-
measure of 0.97 is observed, this means that for almost all tables the correct sub-
ject column is determined. This is an important finding since an incorrect subject
column mostly results in incorrect correspondence for the properties correspon-
dence task. For the class matching task, an F-measure of 0.86 can be be achieved,
followed by the performance for entities with 0.86 and properties with 0.70.

4.2.3 Results of the Column Type Prediction task

Table 4.3 presents the results of our Column Type Prediction experiments. Con-
sidering only the string similarity(Levenshtein) between the candidate class and
the column header to find the the correct column class, the precision is 0.65 and
the recall 0.34. Meaning that for only fewer than half of the tables, the correct
class is assigned, due to the Levenshtein similarity that compares the sets of to-
kens from two strings or applies a character-based comparison. On the other hand,
by only using the frequency-based matcher to find the correct column class, an F-
measure of 0.79 can be achieved.
In order to see the importance of applying methods that rely on context features,
we evaluate the embeddings method independently of the others, an F-measure
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of 0.82 is obtained which is greater than the result of the frequency-based and the
string similarity methods. we can therefore conclude that the use of embeddings is
the most important feature for the class matching task. When we combine all the
previous methods, we reach an F-measure of 0.87. Knowing that the class corre-
spondence task has a strong influence on the other two correspondence tasks, their
performance can be considerably reduced with an incorrect class.

4.2.4 Results of the Entity Linking task

Figure 4.2: The impact of using column types in our system

Lookup method. Generally, an improved lookup method is necessary to achieve
high-quality results. Here we try to add some specializations to the lookup method
in order to improve the chances of finding the correct entity corresponding to the
target mention. Indeed, such specialization is applied to the query to increase the
cohesion of the search results; Figure 4.3 compare between results of a simple
DBpedia lookup and an improved lookup.

Similarity threshold. After computing the local similarity between the mentions
and their candidate entities, we apply a similarity threshold which kept all candi-
date above a configurable threshold as final candidates i.e., if the result is below
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Figure 4.3: Comparison between the results of a simple DBpedia lookup and an
improved lookup

Table 4.4: Variation of the local Similarity threshold
CandidateFilter threshold F-measure
0.3 0.79
0.4 0.95
0.5 0.93
0.6 0.93
0.7 0.90

the given threshold, the entity will be removed from the list of candidates. Hence,
to fix the value of this similarity threshold, we evaluate the F-measure result by
adjusting his value. Table 5.2 show the effect of varying the similarity threshold.

The experimental results illustrated in table 4.4 shows that our system can
achieve high results only if the similarity threshold between both mentions and
candidates entities is equal to 0.4.

Personalized PageRank PPR. At this stage, we have a list of refined candidate
entities. After creating the weighted directed graph where nodes are candidate
entities for all mentions, we apply the PPR algorithm to select for each mention,
the entity that have the highest score. However, to calculate the PPR score of all
the nodes of the graph, PPR takes 4 input parameters:
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Table 4.5: Variation of the number of seed nodes
Number of seed nodes Precision Recall F-measure
1 0.82 0.87 0.84
2 0.83 0.87 0.85
3 0.84 0.86 0.85
4 0.87 0.86 0.86
5 0.87 0.86 0.86
6 0.83 0.80 0.81

Table 4.6: Results of the Columns Predicate Annotation task
Matchers Precision Recall F-measure
Outgoing Properties 0.61 0.65 0.63
Incoming + Outgoing Properties 0.65 0.69 0.67
Extracted-Properties 0.56 0.44 0.50
All 0.69 0.71 0.70

• The disambiguation graph in the form of an adjacency matrix.

• Number of iterations: 50 PPR iterations since the overall results do not
change with more iterations.

• The PageRank jump probability α: α is a damping factor with a default value
of 0.85.

• Select the seed nodes: a small set of nodes which serves as the personal-
ization context. Table 4.5 describe the effect of varying the number of seed
nodes on the final results. Hence, the suitable number of seed nodes that
guaranty the effectiveness of our system is 4.

4.2.5 Results of the Columns Predicate Annotation task

The results of the Columns Predicate Annotation experiments using different com-
binations of matchers are illustrated in Table 4.6. Indeed, if we only take the
extracted-Properties between each two entities in the same row, we get a rather
low recall of less than 0.5. Based on these results, we are already know that the
properties extracted from the triple < e1, p, e2 > is not necessarily a useful feature



Section 4.3 – Comparison with other Approaches 55

Table 4.7: Comparison with methods focusing on the CTA task in Web tables
CTA

Method Precision Recall F-measure
T2K Match 0.94 0.94 0.94
Our method 0.84 0.91 0.87

Table 4.8: Comparison with methods focusing on the EL task in Web tables
EL

Method Precision Recall F-measure
DBpedia Lookup 0.79 0.73 0.76
T2K Match 0.90 0.76 0.82
[Efthymiou et al., 2017] 0.87 0.83 0.85
Our method 0.872 0.862 0.867

for all tables. However, if we consider only the Outgoing-Properties matchers to
find the correct properties between columns, the precision is 0.61 and recall 0.65.

Including values, covered in the incoming-properties matcher, increases both
the precision and the recall by 0.04. When we use all matchers together, a preci-
sion of 0.69 with a recall of 0.71 can be achieved. This confirms that the outgoing-
properties matcher is the most important matcher for the task of columns predicate
annotation .

4.3 Comparison with other Approaches

In this section, we aim to estimate the performance of our system by comparing
our results with other recent approaches to table matching like DBpedia Lookup,
(Efthymiou et al., 2017), T2K Match and its extended version T2K Match++. Ta-
bles 4.7, 4.8 and 4.9 summarise the comparison between these approaches tested
on the T2D corpus. As illustrated in table 5.2, our method outperforms the DBpe-
dia lookup, (Efthymiou et al., 2017) and the T2K match method, with an increase
of 0.1 in F-measure over the Dbpedia lookup, 0.04 over T2K Match and an im-
provment of only 0.02 over the (Efthymiou et al., 2017). For the extended version
of T2K (T2K Match++),it have a high F-measure of 0.87 almost similar to our
results.Hence, we can say that our system considered to be one of the best web
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Table 4.9: Comparison with methods focusing on the CPA task in Web tables
CPA

Method Precision Recall F-measure
T2K Match 0.77 0.65 0.70
Our method 0.69 0.71 0.70

table annotation system.

4.4 Conclusion

During this chapter, we performed an experimental investigation towards our new
method of semantic table interpretation which is presented in the previous chap-
ter.we first introduced the datasets features (T2D), the exploited Knowledge base
(DBpedia) as well as the pre-trained embeddings using in order to evaluate the
performance of our method. After evaluating our method, results shows the high
quality of our method compared to other matching system.



Chapter 5
Conclusion

Web tables are a source of valuable data that has been widely used in a variety of
cases, such as fact search, knowledge base augmentation or Entity Linking. And
despite that, there is only limited approaches that focus on relational data like web
tables.
In this master thesis, we propose a novel unsupervised approach for semantic in-
terpretation of web tables by solving all the three matching tasks namely Column
Type Annotation (CTA), Entity Linking (EL) and Columns Predicate Annotation
(CPA) using DBpedia KB. More precisely, CTA, aims to match table columns
with widely recognized concepts like semantic classes of a KB. We mainly com-
bined two baselines which are semantic embeddings and majority voting.
The EL task builds a weighted directed graph to find the best candidate mapping
between a mention in the Web table and the corresponding entity in the KB. This
collective strategy based on two main features concerning the local similarity be-
tween mentions and entities as well as the global coherence between entities using
words and entities embeddings representations. Thus, our EL method working in
three mains steps: First, a set of candidates entities was generated from Dbpedia
for each mention in the web table. This list is then passed to a filter simulated by a
local similarity between a mention and each candidate entity in the set of entities.
The local similarity calculated in combination with the string similarity and the
cosine similarity between embeddings of both mention and entity candidate. Once
incorrect matches are eliminated using a similarity threshold, we created a direct
disambiguation graph weighted with a global coherence between entities candi-
dates to different mentions, then we applied a personalized pagerank PPR in order
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to select for each mention, the entity that have the highest ranking score. The last
task, CPA, presents a novel method to analyse the behaviour between row entities
to collectively deduce the possible relations between table columns. For this task,
we categorize the properties generated between columns into three groups: (1)
Outgoing-Properties, (2) Incoming-Properties, and (3) Extracted-Properties.

To evaluate the performance of our system, we exploit a corpus of 233 web
tables extracted from T2D gold standard which captures correspondences for all
the three matching tasks between tables and DBpedia KG. By observing the re-
sults of the evaluation, our system obtained relatively high quality results for the
EL task and acceptable results for the other two tasks compared to state-of-the-art
Web table annotation methods. As future work, we would like to improve the
following tasks:

• We aim to improve our approach especially the CTA task using machine
learning technique to automatically train prediction models for annotating
types of entity columns that are assumed to have no metadata.

• We plan to extend our proposed method to other related tasks such as the
discovery of new entities in Web tables for KB population, augmentation
and refinement.
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Vrandečić, D., Groth, P., Noy, N., Janowicz, K., and Goble, C., editors, The
Semantic Web – ISWC 2014, pages 487–502, Cham. Springer International
Publishing.

Zhang, S. and Balog, K. (2019). Auto-completion for data cells in relational
tables. Proceedings of the 28th ACM International Conference on Informa-
tion and Knowledge Management.

Zhang, S., Meij, E., Balog, K., and Reinanda, R. (2020). Novel entity discovery
from web tables. Proceedings of The Web Conference 2020 (WWW ’20),
page 11.

Zhang, X., Chen, Y., Chen, J., Du, X., and Zou, L. (2013). Mapping entity-
attribute web tables to web-scale knowledge bases. In Meng, W., Feng, L.,
Bressan, S., Winiwarter, W., and Song, W., editors, Database Systems for



References 63

Advanced Applications, pages 108–122, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Zhang, Z. (2017). Effective and efficient semantic table interpretation using
tableminer+. Semantic Web, vol. 8, no. 6, pp. 921-957.

Zwicklbauer, S., E., C., G., M., and Seifert., C. (2013). Towards disambiguating
web tables. In Proc. of the 12th Int. Semantic Web Conference.

Zwicklbauer, S., Seifert, C., and Granitzer, M. (2016). Robust and collective
entity disambiguation through semantic embeddings. In SIGIR ’16, pages
425–434.


