
Université de Tunis

Institut Supérieur de Gestion

MASTER RECHERCHE

Spécialité

Sciences et Techniques de l’Informatique Dcisionnelle (STID)

Option

Informatique et Gestion de la Connaissance (IGC)

Automatic large-scale Knowledge Graphs Refinement based on
machine learning techniques

Nouha Thabet

Nadya Yacoubi Ayadi Maitre Assistant, ISG Tunis Directeur du méemoire

Laboratoire RIADI - ENSI





Acknowledgments

First, I want to start by thanking God for all the help, the strength and the ability to
establish this work during my master thesis. Without his blessings, this research
study could not be possible and I could not complete it until the end.

I would like to express my sincere gratitude to Pr. Nadia Yaacoubi who gaved
me the opportunity to join the RIADI laboratory. I am thankful for her support,
guidance and valuables advice.

My greatest and deepest gratitude go to my family for all the support, the con-
tinuous encouragement and the overwhelming love that filled me with strength
and patience. This accomplishment would not have been possible without them.

I extend my gratitude to my friends and everyone who contributed in the success
of this work.

i



Contents

Introduction 1

1 Fundamentals and Technicals Background 3

1.1 The World Wide Web and the Semantic Web . . . . . . . . . . . . 4

1.2 Linked Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Linked Open Data . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Resource Description Framework . . . . . . . . . . . . . . . . . 6

1.4.1 RDF basic elements . . . . . . . . . . . . . . . . . . . . 7

1.4.2 RDF Statement Types . . . . . . . . . . . . . . . . . . . 8

1.4.3 RDF Serialization Formats . . . . . . . . . . . . . . . . . 9

1.5 Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5.1 RDFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5.2 OWL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6 SPARQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.7 Knowledge Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 12

ii



CONTENTS iii

1.7.2 Examples of Well-known Knowledge Graphs and their
construction . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.8 Quality Issues in Linked Data . . . . . . . . . . . . . . . . . . . . 13

1.9 Incompleteness and Noise In Knowledge Graphs . . . . . . . . . 14

1.9.1 Internal and External Methods . . . . . . . . . . . . . . . 14

1.9.2 Latent and Observed Features . . . . . . . . . . . . . . . 15

1.10 Evaluation of Knowledge Graph Refinement Methods . . . . . . . 15

1.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Related Works 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Type Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 SDType . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Error Detection Approaches . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Ontology Enrichment . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Crowdsourcing Approach . . . . . . . . . . . . . . . . . 20

2.3.3 knowledge graph completion (KGC) . . . . . . . . . . . . 20

2.3.4 SDValidate . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Contribution 25

3.1 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 New Approach for Type Prediction in Knowledge Graph . . . . . 29

3.2.1 Sampling Method . . . . . . . . . . . . . . . . . . . . . . 29

3.2.2 Generate clusters of types . . . . . . . . . . . . . . . . . 30

3.2.3 Adding missing types . . . . . . . . . . . . . . . . . . . . 34



iv CONTENTS

3.3 Error Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 Features Extraction . . . . . . . . . . . . . . . . . . . . . 36

3.3.2 Applying the K-means . . . . . . . . . . . . . . . . . . . 37

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Experiments 39

4.1 Environment and datasets . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Evaluation Measures . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1 Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . 40

4.2.2 The Evaluation Metrics . . . . . . . . . . . . . . . . . . . 41

4.3 Type Prediction Evaluation . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 Applying the constraints . . . . . . . . . . . . . . . . . . 42

4.3.2 Choosing the K nearest neighbors . . . . . . . . . . . . . 44

4.4 Error Detection Evaluation . . . . . . . . . . . . . . . . . . . . . 44

4.4.1 Description of the chosen predicates . . . . . . . . . . . . 45

4.4.2 Evaluation of the experiments . . . . . . . . . . . . . . . 46

Conclusion 52



List of Figures

1.1 Semantic Web Layer Cake . . . . . . . . . . . . . . . . . . . . . 5

1.2 The Linking Open Data cloud diagram on 2007 . . . . . . . . . . 6

1.3 The Linking Open Data cloud diagram on 2019 . . . . . . . . . . 7

3.1 Hierarchical clustering of the first submodel . . . . . . . . . . . . 34

3.2 Hierarchical clustering of the second submodel . . . . . . . . . . 35

v



List of Tables

2.1 Distribution of subject and object types for the property dbpedia-
owl:location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Percentage of WDR of some of most relevant properties . . . . . . 26

3.2 Percentage of WDD of some of most relevant properties . . . . . 27

3.3 Example of statements with the property dbo:award . . . . . . . . 28

3.4 Sample of typed entities . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Example of statements of property award after affecting the clusters 37

3.6 Example of model of property award . . . . . . . . . . . . . . . 37

4.1 Example of model . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Features of the entity United States and theirs frequences . . . . . 43

4.3 Evaluation results for k=0.2 . . . . . . . . . . . . . . . . . . . . 44

4.4 Evaluation results for k=0.3 . . . . . . . . . . . . . . . . . . . . 44

4.5 Evaluation results for k=0.4 . . . . . . . . . . . . . . . . . . . . 44

4.6 Results of the manual evaluation on each predicate . . . . . . . . 46

4.7 Experiments on the chosen predicates . . . . . . . . . . . . . . . 48

4.8 Comparison results on the predicate dbo:award . . . . . . . . . . 48

vi



LIST OF TABLES vii

4.9 Comparison results on the predicate dbo:prodecessor . . . . . . . 48

4.10 Comparison results on the predicate dbo:education . . . . . . . . 49

4.11 Comparison results on the predicate dbo:owner . . . . . . . . . . 49

4.12 Comparison results on the predicate dbo:publisher . . . . . . . . . 49

4.13 Comparison results on the predicate dbo:location . . . . . . . . . 50

4.14 Comparison results on the predicate dbo:region . . . . . . . . . . 50



List of Algorithms

3.1 HAC algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

viii



Introduction

Semantic Web knowledge graphs are a structured data and present a source of in-
formation for many intelligent systems. However many search engines now use
them to enrich search results with structured information also several question an-
swering systems convert a question into some kind of query against a knowledge
base and finally information extraction systems will often use a knowledge base
as their main source of training data. They are constructed from collections of
triples, about people, things, and places in the world, and relationships between
them. The data are also stored in a fully machine-readable format that allows
many differents application to get the information from the same knowledge base
(KB) without any format problem.

Many semantic web knowledge base have present a large-scale crossdomain
datasets such as DBpedia, Nell and YAGO. Generating a such structured large
dataset is a challenging task. However, we cannot guarantee a knowledge graph
which is free of noise and incompleteness. As a result, noise presents the erro-
neous triples in a KB and incompleteness presents the missing types of entities
and the missing links between them. Indeed, it’s too hard to detect the noise or
the incompleteness manually on a tens or hundreds millions of triples.

The process of reducing incompleteness and noise is called refinement. De-
veloping automatic knowledge graph refinement methods which can do that on
a large scale is a good way to reduce these problems there with improving the
quality of the data. By improving the quality and coverage of a knowledge graph,
many applications which use KBs can indirectly profit from such improvement.

1



2 Introduction

In the literature, there are two majors categories of refinement methods:T-Box
refinement and A-Box refinement. T-Box refinement rely on the schema or the
ontology and also known as ontology learning while A-Box refinement rely on
the TBox-compliant statements.

Many ABox refinement methods do not use TBox information, relying ex-
clusively on the relations between instances. However, sometimes KB lack from
schema incompletness. Type prediction, link prediction and error detection are
problems of the A-Box refinement in knowledge graphs.

The main objective of this thesis is to develop and improve methods of knowl-
edge graph refinement. We focus on both type prediction and error detection and
we evaluate our proposed methods on a large set of popular available knowledge
graphs.

Our master thesis is organized into two focal parts:
Part I denotes the theoretical aspects that support the concepts used in our work
besides the literature review for related works. This part is contain two chapters
presented as follows:

• Chapter 1: presents the semantic web and its components as well as the
semantic web knowledge graphs and their issues.

• Chapter 2: defines previous works related to the reduction of the noise and
incompleteness.

Part II details our new approaches to reduce incompleteness and noise. This part
is decomposed into two main chapters:

• Chapter 3: details our approaches for type prediction and error detection.

• Chapter 4: presents the execution and the experimentation that have been
done in the purpose of evaluating the results given by our proposed methods
and to compare it with another method.

Finally, a conclusion will summarize our work and will propose future works to
improve our methods.



Chapter 1
Fundamentals and Technicals
Background

Introduction

The increasing diffusion of Linked Open Data (LOD) practices as a standard way
to share knowledge in the Semantic Web by different data providers has generated
a large number of interconnected datasets which comprise an unprecedented vol-
ume of data, commonly represented in Resource Description Framework (RDF).
They are named dataset or “Knowledge graph” by Google in 2012, referring to
their use of semantic knowledge in Web Search. the number of datasets has in-
creased from 12 datasets in 2007 to 570 datasets in 2014 to end with 1224 inter-
linked datasets. The number of links across datasets is estimated to 16,133 links in
2018 which allows to build diverse applications such as NL question processing,
movies/news recommendation.
This chapter focuses on presenting basic concepts of semantic web and Linked
Data. In section 1.2 we introduce the world wide web and why we moved to the
semantic web, in section 1.3 and 1.4 we introduce respectively the linked data
and the linked open data. we presents the semantic web standards in Sections 1.5,
1.6 and 1.7 which are respectively Resource description framework RDF, Ontol-
ogy and SPARSQL. We defined the knowledge graph database in section 1.8 and
finally we discussed quality issues in Linked Data and knowledge graphs respec-
tively in section 1.9 and 1.10.

3



4 Chapter 1 : Fundamentals and Technicals Background

1.1 The World Wide Web and the Semantic Web

The world wide web, also known by WWW is a common place to share infor-
mation around the world. It contains a distribution network of web pages that
are identified and connected to each others by a global links called Uniform Re-
source Locators (URLs) through a protocol such as the application level protocol
Hypertext Transfer Protocol (HTTP). The content of the world wide web which
is understandable by all machines is represented by the Hyper Text Markup Lan-
guage HTML. Basically, the common formats of publishing data on the web are
CSV, XML, or HTML tables and links between web pages are not semantically
processable by machines. In other words, if we are interested to know the num-
ber of people that have received a Nobel Prize award in physics. We can’t get
this information from the web only in two cases. The first one if someone have
published the result on the web, the second one if there is an available data on the
web that have a structured format and can be processed offline. Getting a such
information is not guarantee in the two cases and machines must be able to se-
mantically understand data published on the web.
The semantic web is an extension of the world wide web, but it supports the mean-
ing rather the structure of data. Instead of linking web pages like the WWW, it
links a data to a specific another data contained in that web page and thus by us-
ing global references called Uniform Resource Identifiers (URIs). Moreover, the
distributed web of data is presented by a data model called the Resource Descrip-
tion Framework (RDF). The Semantic Web is based on different standards such as
RDF, OWL and SPARQL that we will discuss them in the next sections. Further-
more it is represented as Semantic Web Layer Cake as shown in Figure 1. Each
layer represents a technical part for its construction and make it as a machine-
readable Web that presents the data on the World Wide Web or as a globally linked
database.

1.2 Linked Data

The term Linked Data coined by the director of the World Wide Web Consor-
tium (W3C) Tim Berners-Lee in a 2006 note about the semantic web project. It
refers to a style of publishing and creating typed links between strutured data from
different sources on the web. Linked data extends standard web technologies to
share information in a way that can be read automatically by computers and thus



Section 1.3 – Linked Open Data 5

Figure 1.1: Semantic Web Layer Cake

by using RDF to make typed statements that link arbitrary things in the world. A
set of rules was defined by Tim Berners-Lee for publishing data on the Web and
make it part of a single global data space:

• Use URIs as names for things

• Use HTTP URIs so that people can look up those names.

• When someone looks up a URI, provide useful information, using the stan-
dards (RDF, SPARQL)

• Include links to other URIs. so that they can discover more things.

1.3 Linked Open Data

Linked Data principles was rapidly adopted and applied in the Linked Open Data
Project. This project founded in January 2007 and supported by the W3C Se-
mantic Web Education and Outreach Group. It aims to extend the Web by iden-
tifying existing open data sets, converting these to RDF according to the Linked
Data principles, publishing them on the Web. and setting RDF links between data



6 Chapter 1 : Fundamentals and Technicals Background

items from different data sources. At the begin, only University research labs and
small companies has contributed in the project. Since then, large organisations
such as the BBC and Thomson Reuters has participated in the project. However
the number of linked open datasets available increased 112 times in twelve years,
passed from twelve data sets on 2017 to 1,234 on 2019.Figure 1 and figure 2 shows
Linked open Data Cloud diagram respectively in 2007 and in 2019.

Each arc in the two figures refers to the existance of links that connect data in
two data sets. Although we notice that there are different shapes of arcs. For
example in Figure 1 the arc between DBpedia data set and Geonames dataset is
heavy and that means there are greater number of links between the two data sets.
Also there is a bidirectional arc between DBpedia and Revyu and this indicates
that the outward links to the other exist in the two data set. The dataset currently
contains 1,234 datasets with 16,136 links.

Figure 1.2: The Linking Open Data cloud diagram on 2007

1.4 Resource Description Framework

Information is expressed in a standard model to enable applications to process
data on the web. This model is the Resource Description Framework RDF, which



Section 1.4 – Resource Description Framework 7

Figure 1.3: The Linking Open Data cloud diagram on 2019

provide an interoperability between these applications. The main goal of RDF
is to define a mechanism for describing resources independent of the application
domain and allow the exchange of information between applications without loss
of meaning. It’s a part of W3C recommendation. (?, ?).
The basic model of RDF has three elements such as statement, three types for the
statement term and different serialization formats.

1.4.1 RDF basic elements

RDF data model has three basic elements which are resource, property and state-
ment.

• Resource : Resources represent things expressed by RDF. A resource could
be an entire page web, a specific element within the page web, an entire web-
site or an object that is not accessible on the web like a historical monument.

• Property : Properties are used to describe resources. Each property has a



8 Chapter 1 : Fundamentals and Technicals Background

specific meaning and each one could be a specific aspect, a characteristic, an
attribute or a relation.

• Statement : A statement is an RDF triple which is composed from a subject,
a predicate and an object. The subject is a resource, the predicate is a named
property and the object which is a value of that named property. A statement
is also called a triple and has the following format:
< resource(sub ject) >< property(predicate) >< propertyvalue(ob ject) >
.

1.4.2 RDF Statement Types

As explained previously a statement is a triple containing three RDF terms in the
form of sub ject− predicate−ob ject. There are three types of an RDF term. It can
be an URI, a literal or a blank node. According to RDF standard the URI can be
used in the three RDF terms, the literal can be used only as an object and the blank
node can be used as subject or object in an RDF triple. The RDF terms could also
be presented as a graph. RDF graph is a set of RDF Triple. A graph is composed
by nodes and edges. The set of nodes are the subjects and the objects and the set
of edges are the predicates. We will discuss later knowledge graphs. As URI was
discussed in previous sections, we now discuss literal and blank node.

• A Literal could be a plain literal or a typed literal and both of them presents
a literal value like a string, number or a date. The plain literal is a string
of the form ”abc@langTag” where ”abc” is an arbitrary (possibly empty)
string, and ”langTag” is either the empty string or a language tag such as
English or French. For example ”Lisbon”@en indicates the language tag
English. However the typed literal is a string combined with a datatype URI.
A datatype URI is defined by the XML schema and indicates dates, integers
and floating point numbers, e.g. ”1994 − 08 − 17”dxsd:date.

• The RDF terms could be represented as a graph where subject and object are nodes
and the predicate is a directed vertex between them, we will discuss later graphs
representation. A blank node is used to denote an anonymous resource which is
a resource without URI or literal. This is happen in documents that contain RDF
description and cannot be referenced outside of their originating scope.

There are two types of RDF triples. When the object is of type literal the triple



Section 1.5 – Ontology 9

is called literal triples. However when the object is of type URI the triple is called
RDF links. In the second type, we can have link between a subject and an object
that belong to different data sets as discussed in section 1.4.

1.4.3 RDF Serialization Formats

As discussed previously, RDF data are published and exchanged between infor-
mation systems on the web. For this reason there is a need for a defined syntax
and thus by serializing RDF data. There are several formats for serializing RDF
RDF/XML, N-Triples , N3, and Terse RDF Triple Language (Turtle). In this the-
sis we will use Turtle to present RDF triples.
A turtle file have a .ttl extension and it’s composed from a sequence of directives,
a triple generating statement or blank lines and cpmments are represented by lines
which begin by #.

1.5 Ontology

Data on the web are published and stored into many databases and most of time
there is a need to the machine to compare or combine information from two or
more databases. However, two different databases may presents the same infor-
mation but with different identifiers. In this case the machine needs to know that
two data may have the same meaning but not the same identifiers. A solution
to this problem is to use ontologies.According to W3C, an ontology defines the
terms used to describe and represent an area of knowledge. Basically, the main
goal of ontologies is to encode knowledge in a domain and make it reusable to be
shared applications. For example in the semantic web it represent the semantics
of documents and enable humains and machines to interpret the meaning of the
exchanged data.
Each web ontology cannot present all knowledge areas but only a specific do-
main such as medecine or education. In addition to that it contains classes, also
called concepts, and relationships between them. The relationships are used to in-
dicate the hierarchy between classes or to describe various features and attributes
of each one. Therefore, ontology represents a set of classes (e.g ”Person”, ”Sci-
entist”,”Award”), and relationships to indicates hierarchy (e.g. The ”Scientist” is
a subclass of ”Person”) and finally a relationship could present a property (e.g.



10 Chapter 1 : Fundamentals and Technicals Background

A ”Scientist” have an award of type ”Award”). Figure 3 explain an example of
ontology.

Therefore web ontologies use a web ontology language such as OWL and RDFS.
we will discuss both of them in the next subsections.

1.5.1 RDFS

RDF Schema is the semantic representation of RDF. It creates vocabulary to de-
scribe RDF resources and classified them as classes or properties and a W3C
recommendation.

Classes are themselves resources and ofen identified by URIs. There are different
classes and each one has a set of resources called instances. Each instance could
belong to one or many classes and therefore a resource could have many types. A
class may be described using RDF properties. For example the property rdf:type
is used to indicate that a resource is an instance of a class (e.g. BMW is an in-
stance of the class ”automobile”).

In addition to that, RDF Schema defines relationships between classes and oth-
ers between properties. For example relationships between classes is provided
throught rd f s : class to represent resources that are RDF classes, rdfs:subClassOf
to state that a class is a subclass of another and rdfs:Resource to describe all things
described by RDF. Relationships between properties are presented by rdf:property
to present properties that are RDF properties, rdf:subPropertyOf to indicate that
one property is a subproperty of another, rdfs:range to restrict which classes can
be object of a property in an RDF triple and finally rdfs:domain to restrict which
classes can be subject of a property in an RDF triple. Many other details about
RDFS are described in reference.

1.5.2 OWL

The web ontology language OWL is also a semantic language for publishing on-
tology on the web and a W3C recommendation. It’s an extension of the RDFS
but it’s more expressive and works with complex relationships between classes
or properties. For example if we need to work with two datasets with two dif-



Section 1.6 – SPARQL 11

ferent ontologies in an application, we can find classes with different URIs but
present the same thing. For instance the URI ”http://schema.org/Place” and the
URI ”http://dbpedia.org/ontology/Place” are different but both of them present the
class ”Place”. In this case OWL helps to indicate that they state for the same class
using owl:sameAs. Many other details about OWL are described in reference.

1.6 SPARQL

SPARQL is the query language of RDF and a recommendation of W3C. The
SPARQL language is similar to the SQL language. The only diference that SQL
operates on relational database and SPARQL operates on RDF graph. A SPRQL
qury can have four forms :

• The SELECT form like in SQL it returns variables and their bindings di-
rectly.

• The CONSTRUCT form returns an RDF graph formed by taking each query
solution in the solution sequence, substituting for the variables in the graph
template, and combining the triples into a single RDF graph by set union.

• The ASK form is used to state if a query has a solution or not.

• The DESCRIBE form returns a graph that contain data about each resource
identified in the solution.

In addition to that a SPARQL query consists of triple patterns, conjunctions ,
disjunctions (logical “or”) and a set of optional patterns such as FILTER to restrict
the solutions of a graph.
Now let takes an example of SPARQL query and answer to the question in section
...

1.7 Knowledge Graphs

In this section, we focus on knowledge graphs as a graph-based knowledge repre-
sentation formalism adopting semantic Web vision and linked data principles. In
section 1.8.1, we present examples of some large-scale knowledge graphs such as
DBpedia and Wikidata.



12 Chapter 1 : Fundamentals and Technicals Background

1.7.1 Overview

All terms defined in the previous sections contribute in the creation of a knowl-
edge graph. The term Knowledge Graph was coined by google in 2012 and has
been recently also used to refer to Semantic Web knowledge bases. In section
1.5 we have state that an RDF triple has also a graph representation. However
the knowledge graph is a set of entities in the form of nodes that are connected
by relations between them. The set of relations are the edges of the graph. In
addition to that, statements of KG are devided into A-Box statements and T-Box
statements. A-Box statements are defined by RDF and the T-Box statements are
defined by OWL and RDFS. For example ”every scientist is a person” is a T-Box
statement however ”Albert Einshtein is a scientist” is an A-Box statement.

1.7.2 Examples of Well-known Knowledge Graphs and their
construction

Knowledge graphs cannot be created manually because of their magnititude. They
are often constructed from unstructured or semi-structured knowledge, such as
Wikipedia, or harvested from the web with a combination of statistical and lin-
guistic methods to transform data to RDF triples. In this section we present some
well-known knowledge graph and how they were constructed.

• DBpedia : DBpedia is the central hub of LOD cloud. It extracts structured in-
formation from wikipedia and convert it into multilingual Knowledge Base.
A wikipedia page is constructed from free text and also from wiki-markup
to identify infobox templates, external pages links, images etc. Infoboxes
are the property summarizing tables found on most of the Wikipedia pages.
Types of the Wikipedia infoboxes are mapped to the DBpedia ontology, and
the keys used in those infoboxes are mapped to properties in the DBpedia
ontology. Based on those mappings, the DBpedia knowledge graph is ex-
tracted . The english version of Dbpedia contains 4.58 million things which
4.22 million are classified in consistent ontology. There are localized ver-
sions of Dbpedia distributed in 125 languages. All these versions describe
38.3 million things and Altogether the DBpedia 2014 release consists of 3
billion pieces of information (RDF triples) out of which 580 million were
extracted from the English edition of Wikipedia, 2.46 billion were extracted
from other language editions.



Section 1.8 – Quality Issues in Linked Data 13

• YAGO : Yet Another Great Ontology (YAGO) extracts information from
wikipedia ans WordNet. Instead of using information extraction method,
YAGO extracts infobox information and category information from wikipedia.
The ontology of this knowledge graph is built from the category system in
Wikipedia and the lexical resource WordNet, with infobox properties manu-
ally mapped to a fixed set of attributes. YAGO has knowledge of more than
10 million entities (like persons, organizations, cities, etc.) and contains
more than 120 million facts about these entities.

• Wikidata : is a multilingual, community-based Knowledge Base introduced
by the Wikimedia organisation. It provides structured information to Wikipedia.
Data is entered and maintained by crowdsourced editors as well as automated
bots. After the shutdown of Freebase, the data contained in Freebase was
subsequently moved to Wikidata.

Dataset DBpedia YAGO Wikidata
Version 2016-04 YAGO3 2016-08-01
instances 5 109 890 5 130 031 17 581 152
facts 397 831 457 1 435 808 056 1 633 309 138
classes 754 576 331 30 765
relations 3555 93 659 11 053
AVG(indegree) 13.52 17.44 9.83
AVG(outdegree) 47.55 101.86 41.25

1.8 Quality Issues in Linked Data

The quality of knowledge graphs was investigated in several research works through
different perspectives. Zaveri et al. () propose a comprehensive conceptual frame-
work for Linked Data Quality Assessment (LDQA) by synthesizing the quality
problems in linked data through 18 quality dimensions. Even more, authors pro-
pose 64 quality metrics according to each dimension.

In the same research work, Zaveri et al. propose a Triple CheckMate which
is a crowdsourcing tool that comprises a manual and a semi-automatic process.
The manual process is the first phase that corresponds to the detection of common
quality problems and their representation in a quality problem taxonomy. The sec-
ond phase comprises of the evaluation of a large number of individual resources,



14 Chapter 1 : Fundamentals and Technicals Background

according to the quality problem taxonomy via crowdsourcing. Although, Za-
veri’s approach covers a large scope of quality problems, the crowdsoucing tool
requires user involvement to detect errors.
Other researchers focus on the most common quality problems which are incom-
pletness and noise. In this master thesis, we focus on (semi-)automatic methods
for error detection and type prediction in knowledge graphs.

1.9 Incompleteness and Noise In Knowledge Graphs

Incompleteness and noise are two major problems of the knowledge graph. In-
completeness refers to missing entities in the graph, missing types for entities and
missing relations, whereas noise refers to faulty statements in the graph.
Noisy data in knowledge bases have two main sources: The first one is the ex-
traction process when erroneous statements are generated from correct natural
language inputs. The second one refers to the existing errors in the data source
just like faulty inputs in the Wikipedia infobox. Manual evaluation on samples
of data has demonstrate that YAGO and DBpedia has respectively 12% and 18%
error statements while Wikipedia has 4.7% faulty statements. In the other hand
it’s too complicate to estimate incompleteness in a knowledge base. However, we
can demonstrate it by the fact that only 2% of people have father in the Wikidata
Graph Database and only 15.87
Decreasing the noise and the incompleteness problems in KG is too complicate
especially with datasets which contains millions of triples. In the next subsection
we will give an overview on some automatic refinement approaches on A-Box.

1.9.1 Internal and External Methods

There are two kinds of methods: the internal methods and the external methods.
The former uses the data of the knowledge base and the latter uses external data
such as other knowledge graphs that are linking to the actual one, text corpora
or crowdsourcing. This kind of methods is not really automatic while internal
methods can be automatic and also uses graph features. There are two kind of
feature: the latent features and the observed features and we will discuss them in
the next section.



Section 1.10 – Evaluation of Knowledge Graph Refinement Methods 15

1.9.2 Latent and Observed Features

Observed feature as indicated are directly observed in the graph. The idea behind
using observed feature is to identified similar entities by checking their common
neighborhood of node and paths between nodes. In the other hand latent feature
are not directly observed in the graph.

1.10 Evaluation of Knowledge Graph Refinement Meth-
ods

There are three main kinds of evaluation approaches for ABox automatic refine-
ment (149): partial gold standard, silver standard and retrospective evaluation.

• Partial Gold Standard: In this evaluation methodology a subset of graph
entities or relations are selected and labeled manually. Other evaluations
use external data as partial gold standards. For completion tasks, this means
that facts that should exist in the knowledge graph are collected, whereas for
correction tasks, a set of facts in the graph is manually labeled as correct or
incorrect. Crafting a gold standard can be extremely costly, and the fact that
the gold standard is created for a relatively small sample can significantly
affect the quality of the evaluation.

• Silver Standard : Another evaluation strategy is to use the given knowl-
edge graph itself as a test dataset. For completion, that means a subset of the
knowledge graph is removed from the training dataset and used as test. For
error detection, wrong facts can be generated and added to the knowledge
graph, then later be used for reference in the evaluation. Since the knowl-
edge graph is not perfect, it cannot be considered as a gold standard, there-
fore we call it a silver standard. However, assuming that the given knowl-
edge graph is already of reasonable quality, the evaluation results should be
a good approximation of the actual results, with the advantage of being fully
automatable.

• Retrospective Evaluation: For retrospective evaluations, the output of a
given completions or identified errors as correct and incorrect. The quality



16 Chapter 1 : Fundamentals and Technicals Background

metric is usually accuracy or precision, along with a statement about the total
number of completions or errors found with the approach, and ideally also
with a statement about the agreement of the human judges. Recall and other
measures which rely on it cannot be calculated since the number of false
positives cannot be calculated. One advantage of retrospective evaluations
is that they allow a very detailed analysis of an approach’s results. However
the annotations are specific for a given method and cannot be reused.

1.11 Conclusion

In this chapter we introduced the Linked Data and its fundamental components
such as RDF, OWL and SPARQL. We defined the knowledge base with some ex-
ample of KG and their construction. Finally, we discussed the quality issues in
KG and introduced some methods.
In the next chapter we will focus on the problems of type prediction and error de-
tection in a knowledge graph and we will present different methods that decrease
the incompleteness and detect errors in a KG.



Chapter 2
Related Works

2.1 Introduction

In the first chapter we talked about issues in knowledge graphs which are not free
of errors and missing types. In this chapter we present previous works related to
issues in knowledge graphs quality. We will first discuss work about type predic-
tion in section 2.2 then discuss error detection in section 2.3.

2.2 Type Prediction

Every resource in a knowledge base can have one or more classes but many knowl-
edge graphs suffer from the lack of this important information. For example
37.3% of DBpedia resources are untyped. Reasoning can be a solution to infer
type information on the semantic web. But knowledge graphs are often noisy, and
reasoning on noisy data can increase the error rate and then damage the quality
of the data. This problem was identified by Ji et al. Many other solutions were
proposed to solve the problem of knowledge graph completness. These solutions
use machine learning techniques and statistical approaches. We will only discuss
the SDType algorithm which has the best results and the most used to complete
missing types in the DBpedia website.

17



18 Chapter 2 : Related Works

2.2.1 SDType

SDType is an algorithm is a statistical approaches that uses ingoing and outgoing
property of a resource and statistical distribution for each property to assign types
for untyped resources. The statistical distribution of each property is the number
of occurance of each type appearing as subject instance and object instance for
that property. Let take as example the property dbpedia-owl:location as shown in
Table 2.1.

Type Subject % Object %
owl:Thing 100.0 88.6
dbpedia-owl:Place 69.8 87.6
dbpedia-owl:PopulatedPlace 0.0 84.7
dbpedia-owl:ArchitecturalStructure 50.7 0.0
dbpedia-owl:Settlement 0.0 50.6
dbpedia-owl:Building 34.0 0.0
dbpedia-owl:Organization 29.1 0.0
dbpedia-owl:City 0.0 24.2
... ... ...

Table 2.1: Distribution of subject and object types for the property dbpedia-
owl:location
The percentage value of subject and object of each type cannot sum up to 100%
because every resource can have multiple types.
We can assign probabilities from this table. For example if we have a resource
x that appears as a subject with the predicate dbpedia-owl:location, then we can
extract the probability P(:x a dbpedia-owl:Place) = 0.698. More formally, given
a resource with a property prop that may be an ingoing property or an outgoing
property, the conditional probability to measure how a type t is expressed by

P(t|(∃prop.T ))

Using only statistical distributions can avoid problems of false type prediction
with knowledge bases in which the extension of some types are several orders
of magnitude larger than that of others. For this reason SDType compute weight
wprop for each property which reflects its predictive power and measure the
deviation of the property’s distribution to the apriori distribution of all types in
the knowledge base. The stronger this deviation, the higher there is assetion
of the property’s predictive power. The weight may not has the same value
when the property is an ingoing property or an outgoing property because of the



Section 2.3 – Error Detection Approaches 19

statistical distributions as shown above. For example with the predicate dbpedia-
owl:location there are two weights wdbpedia−owl:location and wdbpedia−owl:location−1 .
Both statistical distributions per property as well as the apriori probabilities P(t)
are used to calculate the weight wich has the following formula :

wprop :=
∑

alltypest

(P(t) − P(t|(∃prop.T )))2

The conditional probabilities and the property weight are used to implement a
weighted voting approach. This for assigning a likelihood to each type appearing
in the property’s statistical distribution. Then the overall the the weighted sum of
all likelihoods presents the overall predicted type distribution for a resource and
has the following formula : ∑

allpropertiespropo f r

P(t(r)|(∃prop.T )(r))

Finally the type is choosen after applying a confidence threshold.

2.3 Error Detection Approaches

The error detection problem in knowledge base was researched by semantic web
community and classified as a hard problem. Zaveri et al. claim that this problem
cannot be au¬tomatized. Ontology reasoning has the ability to detect conflicts or
error in knowledge graphs but this requires a rich ontology which is difficult to
find it. In fact, the ontology of knowledge bases suffers from the lack of domain
and range restrictions and this presents the main cause of such problem. Only few
methods were proposed as solutions for the error detection problem.

2.3.1 Ontology Enrichment

Enriching the ontology was an approach to detect errors. Töpper et al. (2012) have
enriched DBpedia ontology by adding others domain and range restrictions and
disjointness axioms. Then they used the resulted ontology for error detection and
detect around 60,000 inconsistent statements. But they conclude that in most cases
the cases the identified statement itself is actually correct, whereas the ontology
should be altered.



20 Chapter 2 : Related Works

2.3.2 Crowdsourcing Approach

Using external knowledge from external data sources is another approach to val-
idate statements. Acosta et al. (2013) used crowdsourcing to handle with the
quality of Linked Data. In this approach, the common errors in Linked Data
source were analyzed and classified into the following error classes: wrong literal
values, wrong literal datatypes, and wrong interlinks to other datasets. This clas-
sification helps to specify data that have a similar form of crowdsourcing. This
elaborated via a paid micro-tasks like the validation of a statement, published by
users on Amazon Mechanical Turk. The authors reported maximum precision
of 0.90, 0.83, and 0.94 for the three classes which is impressing. However, this
approach hasn’t a good scalability. They report that the evaluation of 1,037 state-
ments on Amazon Mechanical Turk could be validated in four days which mean
that the whole DBpedia knowledge base would take more than 3,000 years to be
evaluated.

2.3.3 knowledge graph completion (KGC)

Knowledge graph completion (KGC) or link predication methods can also be used
on the error detection problem. These methods can be devided into two types
using two different kind of graph features. The first type presents the graph-based
methods which relies on the observed features like the paths between two nodes
of the graph and the second one presents the embedding methods and relies on the
latent features which learn continuous representations for entities and relations.
We will discuss two approaches of KGC.

Path Ranking Algorithm

The Path Ranking Algorithm (PRA) used in the task of automatically infer
missing facts from existing ones. It was first introduced at first by Lao and
Cohen, 2010, and later slightly modified in various ways (Gardner et al., 2014;
Gardner and Mitchell, 2015). The idea is based on the use of paths that connect
two entities as feature to predict potential relations between them. The path
is equivalent to a sequence of relation < r1, r2, . . . , rn > between two entities.
For example, ( bornIn , capitalOf ) is a path linking SophieMarceau to France
, through an intermediate node Paris . Such paths are then used as features to
predict the presence of specific relations, e.g., nationality. There are three steps in
PRA: feature extraction, feature computation, and relation-specific classification.



Section 2.3 – Error Detection Approaches 21

The first step is to select path features that are potentially useful for predicting
new relation instances. Thus by encoding KG as multi-relation graph. Given a
pair of entities (s, o), PRA then finds the paths by performing random walks over
the graph, recording those starting from s and ending at o with bounded lengths.
More exhaustive strategies like breadth-first (Gardner and Mitchell, 2015) or
depth-first (Shi and Weninger, 2015) search could also be used to enumerate
the paths. After that a set of paths are selected as features, according to some
precision-recall measure (Lao et al., 2011), or simply frequency (Gardner et al.,
2014).

Once path features are selected, the next step is to compute their values. Given
an entity pair (s, o) and a path π, PRA computes the feature value as a random
walk probability p(o—s, π), i.e., the probability of arriving at o given a random
walk starting from s and following exactly all relations in π. Computing these
random walk probabilities could be at great expense. Gardner and Mitchell
(2015) recently showed that such probabilities offer no discernible benefits. So
they just used a binary value to indicate the presence or absence of each path.
Similarly, Shi and Weninger (2015) used the frequency of a path as its feature
value. Besides paths, other features such as path bigrams and vector space
similarities could also be incorporated (Gardner et al., 2014).

The last step of PRA is to train an individual classifier for each relation, so as to
judge whether two entities should be linked by that relation. Given a relation and a
set of training instances (i.e., pairs of entities that are linked by the relation or not,
with features selected and computed as above), one can use any kind of classifier
to train a model. Most previous work simply chooses logistic regression.
The computation of random walk probabilities associated with each path type and
node pair is very intensive, requiring time proportional to the average out-degree
of the graph to the power of the path length for each cell in the computed feature
matrix.

To this end a new way of generating feature matrices over node pairs in a
graph was proposed to improve both the efficiency and the expressivity of the
model relative to PRA. It’s the subgraph feature extraction.



22 Chapter 2 : Related Works

Subgraph Feature Extraction

As discussed before SFE in an improvement of PRA, It was introduced by Gardner
and Mitchell (2015) SFE has the same first step of PRA but the second step was
improved. The first step of PRA does a series of random walks from each subject
and object node. In PRA these random walks are used to find a relatively small set
of potentially useful path types for which more specific random walk probabilities
are then computed, at great expense. In our method, subgraph feature extraction
(SFE), we stop after this first set of random walks and instead construct a binary
feature matrix.

Knowledge Graph Embedding Models

Knowledge graphs embedding models was useful for knowledge graph comple-
tion. Several models were discussed in the literature. RESCAL (Maximilian
Nickel et al. 2011) is the first knowledge graph embedding model, it uses ten-
sor factorization on the adjacency tensor of the knowledge graph. However, each
pair of entities is represented via the tensor product of their embeddings. The
strength of this method figure on its ability to capture complex relational pat-
terns over multiple hops but its quadratic runtime and memory complexity with
regard to the embedding dimension enable it to scale to very large knowledge-
graphs. RESCAL was improved to TRESCAL which used ontology informations
like type and domain and range restrictions to speed up the tensor factorization
process.
Other methods represents relations between subject and object as translations. The
earliest translation-based embeddings model was TransE which predict missing
relationships on a learned low-dimensional embedding of the knowledge graph
entities. PTransE (110) extends TransE by considering relation paths as regular
relations, which makes the number of relations considered grow exponentially.

2.3.4 SDValidate

SDValidate (H.Paulheim and C.Bizer, 2014) is an algorithm that exploit statistical
distributions of properties and types to identify faulty statements based of feature
type of the objects statements. Thus according to Zaveri et al. (2013), who claim
accuracy problems in DBpedia are highly related to the objects being incorrectly
or incompletely extracted. The basic idea is to specify the deviation of the
types predicted by the statement from the statement’s object’s actual types set
in the knowledge base based on confidence score calculated for each statement.



Section 2.4 – Conclusion 23

SDValidate identify statement by first calculating the relative predicate frequency
(RPF), assigning a score to each of the selected statements and finally applying a
threshold to identify error statements.

In the first step is computing RPF which indicates the frequence of a pred-
icate/object combination in the graph. The RPF has the following formula for a
statements:

RPF(s) := P(pred|ob j) =
|statements with pred(s)∧obj(s)|
|statements with obj(s)|

The main idea behind this approach is that statements with frequent predi-
cate/object combination are more likely to be correct than statements with
unfrequent predicate/object combination.

In the second step the score is assigned to each selected statement using
the statistical distribution of predicates and types. SDValidate uses vectors that
contains probabilities of the property’s object and subject and compare them to
the respective resources’ actual types. The confidence score of the statement is
calculated using the cosine similarity of the two vectors. Since objects are more
likely to be wrong, the algorithm focuses on the erroneous objects by comparing
the distribution for the object type of the predicate with a statement’s object’s
types. The formula of true confidence statement is:

con f (s) :=

∑
all types t

p(t|prop−1).d(t, o)

√√√√√ ∑
all types t

p(t|prop1)2
.

√√√√√ ∑
all types t

d(t, o)2

Where prop is a predicate, s is a statement, o is an object and d(t,o) has a binary
value which denotes if a resource o has a type or not.

In the last step a threshold is applied to indicate whatever a statement is
correct or erroneous.

2.4 Conclusion

In this chapter we introduced SDType for type prediction problem and methods
for error detection problem. SDType use statistical distribution to assign types for



24 Chapter 2 : Related Works

untyped resources and reported interesting results. For error detection, we defined
ontology enrichment method which didn’t report good results because many state-
ments identified were semantically correct but they miss ontology informations.
The second method is the crowdsourcing approach which has a good accuracy but
isn’t scalable. The third method is to use methods of knowledge graph completion
to detect errors. And the last one is the algorithm SDValidate for error detection
which use statistical distribution and detects error statements as outliers. In this
master thesis we’re going to improve the results of SDValidate.



Chapter 3
Contribution

Introduction

In this Chapter, we aim to improve the results of SDValidate by using a well known
clustering technique. We will use the types of entities and paths between them as
features. And since knowledge graphs suffer from missing types we will first run
our approach of type prediction.
This chapter is organized as follow: we start with the reserch motivation and our
proposed solution in section 3.2.

3.1 Research Motivation

As discussed in the previous chapter, knowledge graphs suffer from incomplet-
ness and noise. For noisy data H.Paulheim and C.Bizer introduced SDValidate
algorithm to detect erroneous statements and in this master thesis we will present
an approach to improve the results obtained by this algorithm. But first of all we
will introduce the different types of errors in a knowledge base. Some errors could
be detected based on the schema definitions like domain and range violations
but this cannot be happen in the absence of schema definitions as defined in the
previous chapter in the ontology enrichment. The errors in knowledge graphs
could be in type of entities, in the predicate or wrong instances of correct types.

• Erroneous statements could be generated because of wrong typed entities.
However the statement is semantically correct but the subject or the ob-
ject has an erroneous type. For example we have the following triple

25



26 Chapter 3 : Contribution

< OlivierLodhe, award, FaradayMedal >, ”Olivier Lodge” has to be of type
person and ”Faraday Medal” has to be of type Award or a subclass of Award.
In Dbpedia ”Faraday Medal” has the type person which leads to consider this
triple totally wrong. In fact a person cannot have an award of type ”Person”

• Predicate errors indicate that the property asserted between two entities is
wrong. when the property between two entities is wrong. For example,
in DBpedia the triple < I′maLooser, recordedIn, AbbeyRoad > is wrong.
”I’m a looser” is a song by The Beatles from the album ”Abbey Road” the
relation recodedIn has domain MusicalWork and range PopulatedPlace. But
according to this triple the song was recorded in an album which makes
the statement erroneous. To correct it we have to replace the object or the
predicate. If the object were ”Abbey Road Studio” with the type ”Recording
studio” it will be also wrong because the latter is not a subclass of Populated
Place. Therefore, we have to change the predicate to correct it.

• Erroneous statements might also contain wrong instances of correct types.
For example the triple < Ronaldo, PlayedFor,ManchesterUnited > could
be wrong because Ronaldo refers to Ronaldo Nuzario instead of Cristiani
Ronaldo. However this kind of error is not easy to detect automatically.

Inspired by a work presented in (), we conducted a similar experimentation on
the DBprdia dataset to estimate Wrong Domain Rate (WDR) and Wrong Range
Rate (WRR). However, Wrong Domain Rate (WDR) indicates the ratio between
the number of times a property p is used with a wrong domain to its total number
of uses. Same for Wrong Range Rate (WRR) which is the ratio between the
number of times the property is used with a wrong range to its total number of
uses. The first row of Table 1 shows the number of time of each property used in
the previous examples appears with wrong domain or range accompanied with
its WDR or WRR. According to () the other properties of the table are properties
frequenty used and appears with high value of WDR or WRR.

Table 3.1: Percentage of WDR of some of most relevant properties



Section 3.1 – Research Motivation 27

Property Number of triples Domain WDR
dbo:university 36557 Person 0.81
dbo:country 3963 Person 0.66
dbo:training 46003 Artist 0.66

dbo:child 73826 Person 0.60
dbo:birthPlace 399131 Person 0.36

Table 3.2: Percentage of WDD of some of most relevant properties

Property Number of triples Range WRR
dbo:starring 111974 Actor 0.96

dbo:birthPlace 399131 Place 0.78
dbo:country 233700 Counrty 0.59
dbo:award 135534 Award 0.52

We notice that the values obtained are too high because of the incompletness of
the dataset. In fact, for an RDF triple (s,p,o), if s has not the RDF:type domain of
p then (s,p,o) is considered wrong. Also, if o has not RDF:type range of p then
(s,p,o) is considred wrong. Indeed, the missing types lead to incorrect detection
since KG often comprise of noisy data as well as incomplete data.
This motivate us to propose a type prediction approach to enhance the error
detection task.

We presented in chapter 2, the best state-of-art system for error detection in
Knowledge graph, SDValidate which is an approach that uses statistical distri-
butions of properties to detect faulty statements for each predicate p. However,
there are the same issues with this approach because it does not detect all wrong
statements when we lack information about entity types. Let take the following
sample of statements of the predicate dbp:award:



28 Chapter 3 : Contribution

Subject Predicate Object
dbr:Owen Chamberlain dbo:award dbr:Nobel Prize in Physics
dbr:Rei Dan dbo:award dbr:Blue Ribbon Awards
dbr:Sofia Coppola dbo:award dbr:Academy Awards
dbr:Lee Je hoon dbo:award dbr:2011
dbr:Eichi Negishi dbo:award dbr:Nobel Prize in Chemistry
dbo:Im Ji kyu dbo:award dbr:2008
dbr:Shinya Yamanaka dbo:award dbr:Nobel Prize in Physiology or Medicine
dbr:Lee Sang hee dbo:award dbr:United States
dbr:Jean Antoine Verdier dbo:award dbr:South Korea

Table 3.3: Example of statements with the property dbo:award
The property dbo:award has the class ”Person” as domain and the class ”Award”
as range. For example the first fact in the table is correct because the subject
is a person and the object is an award. But the statements having the objects
dbr:2011, dbr:2008, dbr:United States and dbr: South Korea are incorrect because
these objects are not of type award. Hence the sample contains four wrong state-
ments, but after running SDValidate only two of them were detected which are
< Lee Je hoon , award, 2011 > and < Lee Sang hee, award, United States >. We
used a manual evaluation on the DBpedia dataset to compute the number of er-
roenous statements that not detected by SDValidate. For the properties award,
nationality and occupation we found respectively 32%, 28% and 21% of erre-
neous statements. For example in the case of the given sample below it’s clear
that there is a similarity between the statement < Lee Je hoon , award, 2011 >

and the statement < Im Ji kyu , award, 2008 > because each one of them has an
object that represent a year, and the same thing between the two other wrong state-
ments because each one of them has an object that represent a country. However
our approach aims to detect the statements that are not detected by SDValidate but
similar to those which were detected. To reach this goal we apply the k-means
clustering algorithm and compute the similarity between the statements based on
theirs objects. We use two kind of features: The first one is the types of each ob-
ject of a given predicate and the second one is the path between each object and its
subject for that predicate. We apply the random walks algorithm to extract paths
between entities and we extract types from the dbpedia dataset. Since dbpedia
datasets suffer from missing type assertion and since our approach rely on feature
type, we will first try to predict missing types using a classifier before applying
the k-means clustering. Finally our approach comprises two main contributions :



Section 3.2 – New Approach for Type Prediction in Knowledge Graph 29

• Type prediction : To asses missing types for untyped entities and then use
them as features in the error detection. The main idea behind this contribu-
tion is to use properties that connect two resources as feature to indicate their
types and run them into a KNN classifier.

• Error Detection : To improve the result of SDValidate and detect other erre-
nous statements. As indicated previously, the main idea behind this contri-
bution is to detect new erroneous statements based on theirs objects features.
However, for a given relation, we use types of objects and paths that connect
these objects to theirs subjects and run a k-means clustering to obtain two
clusters: one for correct statements and the other for wrong statements.

3.2 New Approach for Type Prediction in Knowl-
edge Graph

In our approach of type prediction we use the KNN classifier to predict missing
type for a given untyped entity and the typed entities as neighbors. We used a
SPARQL query to get the number of typed resource of the smallest version of
dbpedia and we found that there are about 60.000 typed resources. Since the
number is too large we are going to take only a sample from the set of typed
entities. Also we noticed that there are at least 200 types of entities in the dbpedia
dataset using SPARQL query. And since every resource often has many types we
cannot detect the right type for a given untyped object or subject by directly using
the KNN classifier. To solve this problem we run a hierarchical clustering to make
clusters of similar types, then the result of the KNN will be a cluster of types that
matches to the given untyped resource.
Our approach is divided into three steps. First we use only a sample of the typed
entities. However the smallest version of dbpedia Then since every entity has
many types we will make cluster of similar types using the hierarchical clustering.
Finally we run the KNN classifier to on the sample of typed entities to detect the
cluster of types that matches to a given untyped entity. We will discuss the details
of these steps in the next subsections.

3.2.1 Sampling Method

In order to optimize the time of computation to create cluster, we’re going to
reduce the space using a sample of the large dataset. We have to choose the



30 Chapter 3 : Contribution

adequate sampling method to garantee a good results, however if anything goes
wrong with the sample then it will be directly reflected in the final result. Many
sampling methods have been proposed and they are divided into two categories:
Probability Sampling and Non-Probability Sampling (Tansey, 2007).

• Probability Sampling : Also known as random sampling. These method
use random selection technique to make sure that every entity within the
population has an equal chance to be seleted in the sample (Waksberg, 1978).

• Non-Probability Sampling : These methods rely on the reseracher’s ability
to select the entities for the sample and the probability of all elements to be
selected is not the same (Tansey, 2007).

Since non-probability sampling methods need strategy and plan to be applied it
will be too complex to use them with large datasets. In this work we’re going to
focus on probability sampling methods.
To create clusters of types we need to use all types of the dataset and to predict
missing types we need to use all ingoing and outgoing properties and paths. We
apply Simple Random Sampling based on ingoing properties, outgoing proper-
ties, paths and types. The Simple Random Sampling is the basic sampling tech-
nique where we select a group of entities (a sample) for study from a larger
group (a population). Each individual is chosen entirely by chance and each
member of the population has an equal chance of being included in the sam-
ple. Every possible sample of a given size has the same chance of selection.
Let T be the set of types where T = {t1, t2, ..., t|T |}. P and P−1 are respectively
the set of ingoing properties and outgoing properties where P = {p1, p2, ..., p|P|}
and P−1 = {p−1

1 , p−1
2 , ..., p−1

|P−1 |
}. The three sets present the set of features F where

{T, P, P−1} ∈ F and F = { f1, f2, ..., f|F|}. For each feature fi where i ∈ {1..|F|} we
take the population of entities that has the selected feature and then we select a
sample si from the population. Finally we create a global sample S containing all
different entities selected in the previous samples.

3.2.2 Generate clusters of types

After creating the sample of typed entities we are going to use the hierarchical
clustering algorithm to assign a cluster to each group of entities based on the sim-
ilarity of their types. As discussed in section 3.2 we cannot run the KNN classifier
on a on a multiclass entities and have a good results.
There are two types of hierarchical clustering: Agglomerative and divisive. The



Section 3.2 – New Approach for Type Prediction in Knowledge Graph 31

former consider each entity as an individual cluster, then at each iteration the clus-
ters having minimum distance merge with other clusters until the formation of one
or K clusters. The latter consider all entities as one cluster, then at each iteration
the entities having maximum distance between them will be divided into K clus-
ters.
In our approach we use the agglomerative clustering which starts with each el-
ement as a unique cluster and then merge them successively into larger clusters
to get a final cluster. At each particular stage, the two most similar clusters are
merged together.
The hierarchical ascendant algorithm (HAC) is like follows:

Algorithm 3.1 HAC algorithm
Begin
Initialization:
NE: set of entities
for i from 1 to NE do

Create a cluster
C = {c1, ..., cN}

end for
for j from 1 to cN do

for i from 1 to cN do
distance (c j, ci)
create the similarity matrix

end for
end for
while |C| > 1 do

recover the pair (cn1, cn2) from the clusters having the maximum similarity
remove from C these two clusters
add to C the cluster corresponding to their melting
update the similarity matrix

end while
End

We calculate the distance using the euclidean distance which has the following
formula :

d(ei, e j) =

√
n∑

i=1

(ei − e j)2



32 Chapter 3 : Contribution

Then we use the types of the entities of the generated sample as features. Let ES
be the set of entities of the sample and T the set of types where:

• ES i denotes the entity i of the sample and i ∈ [1..|ES |]

• T j denotes the type j and j in[1..|T |]

• ES i(T j) ∈ {0, 1} to indicate if an entity ES i has the type T j

The first step is to compute the proximity matrix, and since the number of entities
and types is large we have to apply a heuristic. Indeed, the smallest version of
DBpedia dataset for types contains at least 500 000 statements having at least
about 200 different labels representing types and each entity can have at most
about 10% of the existing types. The computation of euclidean distance will take
too much time because the vector of features is large. For this reason we have
created submodels instead of working on the general model and the entities of
each submodel have at least one type in common. Formally for two entities ES i

and ES i′ we have ES i
⋂

ES i′ , �. Let take an example of a small dataset :



Section 3.2 – New Approach for Type Prediction in Knowledge Graph 33

Entity Type
dbr:Albert Einshtein dbo:Person
dbr:Albert Einshtein dbo:Scientist
dbr:Charles Darwin dbo:Person
dbr:Charles Darwin dbo:Scientist
dbr:Barak Obama dbo:Person
dbo:Barak Obama dbo:President
dbr:Beji Kaid Essebsi dbo: Person
dbr:Beji Kaid Essebsi dbo: President
dbr:United states dbo:Place
dbr:United states dbo:Country
dbr:South Korea dbo:Place
dbr:South Korea dbo:Country
dbr:Tunisia dbo:Place
dbr:Tunisia dbo:Country
dbr:Tunis dbo:Place
dbr:Tunis dbo:Capital
dbr:Paris dbo:Place
dbr:Paris dbo:Capital
dbr:Ons Jabeur dbo:Person
dbr:Ons Jabeur dbo:Athlete
dbr:Rafael Nadal dbo:Person
dbr:Rafael Nadal dbo:Athlete

Table 3.4: Sample of typed entities
When we apply the heuristic on this sample of data we will obtain two submodels.
The first submodel M1 contains the entities that have the common type dbo:Person
and the second one M2 contains the entities that have the common type dbo:Place.
Then we apply the hierarchical clustering on each submodel and we obtain a set
of cluster C where C = C1,C2, ...,C|C|:

• C1 : Presents the cluster of scientist person and contain the types dbo:Person,
dbo:PopulatedPerson and dbo:Scientist.

• C2 : Presents the cluster of the person who are presidents of countries and
contains the types dbo:Person and dbo:President.

• C3 : Presents the cluster of athlete persons and contains the types dbo:Person
and dbo:Athlete.



34 Chapter 3 : Contribution

• C4 : Presents the places which are contries and contains the types dbo:Place
and dbo:Country.

• C5 : Presents the place which are capitals and contains the types dbo:Place
and dbo:Capital.

Figure 3.1: Hierarchical clustering of the first submodel

3.2.3 Adding missing types

After creating clusters of types we will apply the k-Nearest-Neighbours classifier
to add missing types. However the kNN is a non-parametric classification method,
which is simple but effective in many cases. For a data record an entity Ek to be
classified where k ∈ 1..|E|, its k nearest neighbours are retrieved, and this forms a
neighbourhood of Ek. Majority voting among the data records in the neighbour-
hood is usually used to decide the classification for Ek. However, to apply kNN we
need to choose an appropriate value for k, and the success of classification is very
much dependent on this value. In a sense, the kNN method is biased by k. There
are many ways of choosing the k value, but a simple one is to run the algorithm



Section 3.2 – New Approach for Type Prediction in Knowledge Graph 35

Figure 3.2: Hierarchical clustering of the second submodel

many times with different k values and choose the one with the best performance.
For each untyped entity we retrieve the number of each label of ingoing and out-
going properties that appear whith that resource and we choose G properties that
have hight frequencies to be features of that resource. For example the resource
”dbr:United States” appears with 20 ingoing and outgoing properties. Some prop-
erties like dbo : location−1 and dbo : birthPlace−1 have respectively the frequence
520 and 350 and some others like dbo : award−1 and dbo : locaion−1 have respec-
tively the frequency 4 and 2. We choose the top G predicates because those who
have low frequency have a hight probability to be wrong. However, a statement
that has the predicate dbo : award−1 with the object ”United states” cannot be cor-
rect since dbo : award−1 must appears with objects that have the type ”Award”.
Indeed, predicting types on noisy data can lead to false type prediction.
After choosing the top properties that appear with the untyped given entity, we
use them as features of it. Then for each untyped resource we create a model with
typed entities that repect two constraints:

• Each typed entity of the model must have at least one predicate in common
with the given resource. More formaly for each untyped entity Ek we create a



36 Chapter 3 : Contribution

model and for each entity of the model ES i we have the following constraint
Ek
⋂

ES i , �.

• Each typed entity of the model must have the same nature as the given un-
typed resource. However if the given entity is an object (has only ingoing
properties) the entities of the model must also be only objects and so onif it
was subject or both subject and object.

Finally we run the KNN classifier to choose the cluster of types that matches to
the untyped resource.

3.3 Error Detection

Our seceond contribution is to improve the results of SDValidate and using the
k-means algorithm to detect if there is a triple that does not appear in the results
of SDValidate but similar to triples resulted by this algorithm. We use two kinds
of features: The types of subjects and objects in a one given relation like the
approach of SDValidate and the paths features like in the approach of PRA.
The problem with the first approach that solely relying on type feautures do not
give performant results when we work with knowledge graphs that suffer from
missing type assertion. The second approach has also problems. If we use only
path features we can classify correct facts as wrong because of the incompletness
in the case of missing properties. However the best way to create our model is to
combinate the two kind of features.

3.3.1 Features Extraction

We have already indicate that we use two kinds of feature in our model. Before
extracting the feature we run SDValidate algorithm and we select the properties
that appear in the wrong triples detected by SDValidate. Then we work on each
relation solely to get the features of its subjects and objects. We extract the types
of entities from the dbpedia dataset. However, we run the random walks algo-
rithms over the graph to find paths between two entities that are connected by a
relation between them.
A random walk on a graph is the process of visiting the nodes of the graph in
some sequential random order. Since we compute the similarity of statements
based on theirs objects, the walk starts at some fixed node which presents an
object, and at each step it moves to a neighbor of the current node chosen ran-
domly. We extract the path when the final is a connected subject for that object



Section 3.3 – Error Detection 37

with a given predicate. We select the maximum path length and we do not al-
low a relation to be immediately followed by its inverse. Let Pmax be the max-
imum path length and we define a path as a sequence of relations denoted by
r1 → r2 → ... → rn and which is connected by entities. A path between a subject
s and an object o is denoted by P(s, o) ⇔ r(s, e1) → r(e2, e3) → ... → r(en−1, o).
The inverse of a relation is denote by r−1 where r(s, o) = r−1(o, s). For exam-
ple we want to extract a paths for between the object and the subject of the
triples < BarackObama, bornIn,Honolulu >. After running the random walks
we find two paths: The first one is the predicate bornIn−1 and the second one is
capital/study−1.

3.3.2 Applying the K-means

Once the types and paths have been selected we use them as features to create
a model for each property that appears in the output of SDValidate. For a given
predicate, we initialize two clusters, one for have the label ”Wrong” and con-
tains the erroneous statements resulted by SDValidate and the other have the label
”Correct” and presents the rest of statements. We compute the centroids Ccorrect

and Cwrong of each cluster based of the features selected. Since that error detec-
tion method of SDValidate focus on wrong objects for a property we compute the
distance between each object appearing with correct statement with the centroid
Ccorrect and Cwrong to check if that object is really ”correct” or not. Let take the
following example of statements of property ”award”.

Table 3.5: Example of statements of property award after affecting the clusters

Subject Predicate Object Cluster
dbr:Albert Einshtein dbo:award dbr:Nobel Prize in Physics correct
dbr:Douglas MacArthur dbo:award Medal of Honor correct
dbr:Lee Beom seok dbo:award dbr:1963 correct
dbr:Alexander Fleming dbo:award dbr:Nobel Prize in Physiology correct
dbr:Paik Sun yup dbo:award dbr:2001 false
dbr:Chien Shiung dbo:award 1966 false

We extract the type and paths feature of each objects in the example and create a
binary model:

Table 3.6: Example of model of property award



38 Chapter 3 : Contribution

Object dbo:award dbo:year award birthdate/deathdate−1 Cluster
dbr:Nobel Prize in Physics 1 0 1 0 correct
Medal of Honor 1 0 1 0 correct
dbr:1963 0 1 0 1 correct
dbr:Nobel Prize in Physiology 1 0 1 0 correct
dbr:2001 0 1 0 1 false
dbr:1966 0 1 0 1 false

A statement with the property ”award” must have an object of type award and the
object dbr:1963 doesn’t have this type and wasn’t detected as erroneous. If we
apply the k-means and we compute the distance between it and each one of the
two centroid we find that its close to the cluster ”false”.

We do this step for each objects of the cluster ”correct” and we update each time
the clusters centroids.

3.4 Conclusion

In this chapter we presented our approach to improve the quality of knowledge
base to add missing types and to get better results when we try to improve the out-
put of SDValidate. We used types and paths features and created a binary model
to run k-means algorithm and detect wrong statements.
Different steps of the approach are experimentally studied to evaluate the perfor-
mance of the proposed approach in the next chapter.



Chapter 4
Experiments

Introduction

To evaluate the performance of our approach of type prediction as well as error
detection in RDF knowledge graphs, we describe in this chapter different exper-
iments with different DBpedia datasets. Then we make a manual evaluations for
the results. The rest of this Chapter is organized as follows: Section 4.2. presents
the envirement and the datasets used in this work, section 4.3 contains the experi-
ments results for type prediction and section 4.4 contains the experiments results
for error detection.

4.1 Environment and datasets

Two different test environment were used to deal with this work.
The first is a machine with Intel i7-6700HQ with 8GB of memory using the oper-
ating system Windows 10 and eclipse IDE for java developers with the database
SQL. This environment where used to add missing types with KNN classifier and
to detect erroneous statements with K-Means.
The second is a machine with 64GB of memory using the operating system Win-
dows 10 and eclipse IDE for java developers with relational database H2 to run
the Random Walk algorithm to get the paths features.
To evaluate our approach we use three versions of DBpedia: the French version,
the German version and the Korean version.

39



40 Chapter 4 : Experiments

Dataset Triples Typed Entities Untyped Entities
French 3 745 190 444 202 415 390
Koorean 461 795 58 937 6944

4.2 Evaluation Measures

To evaluate the performance of our proposed approach we need to evaluate the
quality of the results. The evaluation is done through four metrics bwhich are
Accuracy, recall , precision and F-measure based on the confusion matrix.

4.2.1 Confusion Matrix

A confusion matrix is a summary of prediction results on a classification problem.
The number of correct and incorrect predictions are summarized with count values
and broken down by each class. This is the key to the confusion matrix. It gives
an insight not only into the errors being made by a classifier but more importantly
the types of errors that are being made.

Class 1 Predicted Class 2 Predicted
Class 1 TP FN
Class 2 FP TN

According the confusion matrix below Class 1 presents the positive results and
Class 2 presents the negative results and the other terms are :

• Positive (P) : Observation is positive (for example: is an apple).

• Negative (N) : Observation is not positive (for example: is not an apple).

• True Positive (TP) : Observation is positive, and is predicted to be positive.

• False Negative (FN) : Observation is positive, but is predicted negative.

• True Negative (TN) : Observation is negative, and is predicted to be negative.

• False Positive (FP) : Observation is negative, but is predicted positive.

The values of these terms will be used to compute the metrics.



Section 4.3 – Type Prediction Evaluation 41

4.2.2 The Evaluation Metrics

• Accuracy : It’s the ratio of the correctly labeled subjects to the whole
pool of subjects. Accuracy is the most intuitive one. Accuracy answers the
following question: How many instances did we correctly label out of all the
instances?

Accuracy =
(T P+T N)

(T P+FP+FN+T N)

• Precision : It’s the ratio of the correctly instance labeled by the model to all
instance labeled. Precision answers the following: How many of those who
we labeled as erroneous are actually erroneous?

Precision = T P
T P+FP

• Recall : It’s the ratio of the correctly instance labeled by our model to all
who are erroneous in reality. Recall answers the following question: Of all
the instances who are erroneous, how many of those we correctly predict?

Recall = T P
T P+FN

• F-Measure : It considers both precision and recall. It is the harmonic
mean(average) of the precision and recall. F1 Score is best if there is some
sort of balance between precision (p) recall (r) in the system. Oppositely F1
Score isn’t so high if one measure is improved at the expense of the other.
For example, if P is 1 R is 0, F1 score is 0.

F − measure = 2 ∗ (Recall∗Precision)
(Recall+Precision)

4.3 Type Prediction Evaluation

We apply the sampling method described in section 3.2.1 of chapter 3 to choose
a sample of typed entities and to accelerate the computation of the KNN. After
creating the sample we run the hierarchical clustering to generate cluster of types
as defined in section 3.2.2. Finally we run the KNN algorithm to choose a cluster
of types for each untyped entity respecting the several constraints. We explain
how we apply these constraints and how we choose the K nearest neighbors in the
next subsections.



42 Chapter 4 : Experiments

4.3.1 Applying the constraints

Predicting types on noisy data can lead to false type prediction, if we directly
apply the KNN without any restrictions we cannot enable the generation of erro-
neous type prediction and damage the quality of the data. Therefore, we apply
three constraints to reduce the rate of false type prediction.

First constraint

For every untyped entity we choose a set of typed entity from the generated sample
that have at least one feature in common.

Second constraint

If the untyped entity presents an object (respectively subject or both object and
subject), then every entity of the chosen set must also present an object (respec-
tively subject or both object and subject).

Third constraint

For each untyped entity we only select the p f most frequent predicates as features.
However, the more the frequence of that predicate is frequent the more it has a
high estimation to be correct.

Example

We take the example of the untyped entity dbr:UnitedStates and the set of
typed entities dbr : France, dbr:AlbertEinshtein , dbr:NoberlPrizeinPhysics,
dbr:Tunisia and dbr:Stadium.

• dbr:France(Place, country, populatedPlace)

• dbr:AlbertEinshtein (Person, Scientist)

• dbr:NoberlPrizeinPhysics(Award)

• dbr:Tunisia (Place, country, populatedPlace)

• dbr:Stadium (Place, Settelment)

Table 4.1 presents the predicates of each entity of the example. When we apply
the first constraint the set of entity of the model will be : France, Albert Einshtein



Section 4.3 – Type Prediction Evaluation 43

, Tunisia, Nobel Prize in Physics. But Albert Einshtein and nobel prize in physics
have types which are completely different from United States. So applying only
the first constraint is not the best solution.

Table 4.1: Example of model

United States France Albert Einshtein Nobel Prize Tunisia Stadium
location−1 city−1 occupation award−1 country−1 Location − 1
birthPlace−1 birthPlace−1 award playIn−1

city−1 liveIn−1 bithPlace−1

country−1 city−1

award−1

occupation−1

The entity United States have only ingoing predicates, so it presents an object.
We apply the second constraint and we choose the entities Tunisia, France and
Nobel Prize in Physics which are all objects. Finally we apply the third constraint
to choose the most frequent predicates as features. According to table 4.2 the
most frequent predicates are: location−1, birthPlace−1 and city−1. We do not
choose those who has low frequency because they have a hoght probability to
present error triples like award−1 and occupation−1.

Table 4.2: Features of the entity United States and theirs frequences

United States
Predicate Frequence
location−1 520
birthPlace−1 312
city−1 240
country−1 2
award−1 4
occupation−1 2

After applying both the three constraints the final model for the entity United
States will be composed of the entities France, Tunisia and Stadium which are all
of types dbo:Place.



44 Chapter 4 : Experiments

4.3.2 Choosing the K nearest neighbors

After creating the model we run the KNN classifier and choose the K entities that
have minimum distance and affect the types of the dominnat cluster to that entity.
Choosing the K nearest neighbors is a challenging task. In our case each entity
has its own model. For instance, the dbr:UnitedStates has a model of 145 entities
while dbr:NobelPrizeOfPeace has a model of 20 entities. We cannot fix a standard
K value, but we need to fix a percentage k. We choose 3 value of k and evaluate
the results on the koorean and french dataset and we detail the precision as shown
in the following tables.

Table 4.3: Evaluation results for
k=0.2

Dataset Precision
Koorean 0.8913
French 0

Table 4.4: Evaluation results for
k=0.3

Dataset Precision
Koorean 0.9637
French 0

Table 4.5: Evaluation results for k=0.4

Dataset Precision
Koorean 0.9581
French 0

According to Table 4.3, Table 4.4 and Table 4.5 we get a higher precision=0.9637
in the koorean dataset with k=0.3. So we choose 0.3 as a value for k.

4.4 Error Detection Evaluation

To test our approach of error detection we run first SDValidate on the given
dataset. Then for each predicate we generate a cluster of error objects of the
statements containing the objects of the output of SDValidate and a cluster for
correct objects of the statements containing the rest of triples of the given predi-
cate. Based on the two generated clusters, we run the k-means algorithm and we
compare the similarity of each object regarding the two centroids of clusters. If
the distance between the object and the cluster of error objects is less than the
distance between that object and the cluster of correct object, we affect that object
to the cluster of errors. Finally, after running the k-means several times and based



Section 4.4 – Error Detection Evaluation 45

on the objects of the clusters, we generate the erroneous statements.
We use the Koorean dataset of DBPedia and we run at fist our approach of error
detection on the predicates of the koorean dataset, then we add the results of our
approach of type prediction to use the predicted types with the other features and
we run again our approach of error detection.
For the comparision results we select some predicates with different results to
discuss them. In the next subsection we define each predicate semantically to
understand the errors.

4.4.1 Description of the chosen predicates

To evaluate the result of our approach, we choose the predicates dbo:award,
dbo:prodecessor, dbo:owner and dbo:education. We define each one of them and
give theirs numbers of triples.

• The predicate dbo:award is used in a statement to indicate that a per-
son, a movie or a song has earned a specific prize. For example the triple
< AlbertEinstein, award,NobelPrizeinPhysics > indicates that Albert Ein-
stein earned a nobel prize in physics. In DBPedia, it has a range of type
dbo:Award.

• The predicate dbo:predecessor indicate that a person pre-
cede a person in a given post. For example the statement
< BarackObama, predecessor,GeorgeBush > indicates that George
Bush was the president of the United States before Barack Obama.

• The predicate dbo:owner in a statement indicates that a person own a so-
ciety, industry, a club or any well known brand. For example we can in-
dicate that Bill Gates is the owner of Microsoft by the following triple<
BillGates, owner,Microso f t >.

• The predicate dbo:education indicates that a person has contin-
ued her studies in a given university or school. Example: <

EmanuelPastreich, education,HarvardUniversity >.

• The predicate dbo:publisher indicates that a person, a society or a labora-
tory is a publisher of some work. For example we can use this predicate to
indicate that Joanne Kathleen Rowling is the publisher of Harry Potter series.



46 Chapter 4 : Experiments

• The predicate dbo:location has always an object of type place and used to
indicate the location of a given subject.
Example: < Osta f yevoInternationalAirport, location,Russia >.

• The predicate dbo:region indicates he region where the thing is located or is
connected to. Example: < MondegoRiver, region, Portugal >.

We make a manual evaluation on the statements of each predicate to compute the
real number of erroneous statements. The Table 4.1 presents the total number
of triples and the number of erroneous triples of each property of the Koorean
Dataset. Then we apply the SDValidate for error detection and our approach to
compare them.

Table 4.6: Results of the manual evaluation on each predicate

Predicate Number of Triples Erroneous Triples
dbo:award 793 136
dbo:predecessor 883 28
dbo:owner 540 50
dbo:education 732 145
dbo:publisher 394 32
dbo:location 4210 0
dbo:region 2435 12

4.4.2 Evaluation of the experiments

After the manual evaluation, we use the predicates described above on three ex-
periments which are:

• SDValidate for error detection.

• SDValidate with the result of the KNN approach for type prediction

• SDValidate and our two approach: k-means for error detection and the result
of KNN for type completion to add missing types features.

Table 4.2 shows the results of the expériments. We observe three types of results
devided as follow:



Section 4.4 – Error Detection Evaluation 47

• Result 1: We note that the third approach outperforms the two previous one
with the predicates dbo:award, dbo:predecessor and dbo:education. For ex-
ample for the predicate dbo:predecessor we obtained only 4 erroneous state-
ments out of 28 when we runned SDValidate. However, we can detect the
half of erroneous statements when we combining SDValidate with k-means.
Then this result was increased by detecting 70% of the faulty predicates
when we add the result of KNN to the set of type features.

• Result 2: We note that only the second approach outperforms the first one for
the predicates dbo:owner and dbo:publisher. Indeed, there is no difference
between the results of the second approach and the third one.

• Result 3: We note that SDValidate has bad results for the predicates
dbo:location. In fact, 418 erroneous statements were detected for the predi-
cate dbo:location while we didn’t find any faulty statements using the manual
evaluation. When we use the results of KNN with sdvalidate the number of
error statements decreases from 418 to 212 but when we apply the k-means
it increases from 212 to 2310 which is greater than the half of total triples
having the predicate dbo:location. Since DBpedia’s correctness is estimated
to be 92% and SDValidate detects erroneous triples based on the outliers, the
number of erroneous statements per predicate could not be high. If we run
our approach and we find that the total number of erroneous statements is
greater than the rest of the statements that means that SDValidate had prob-
ably bad results for the given predicate and we should not take them.

• Result 4: We note that SDValidate has bad results for the predicate
dbo:region. In fact, 250 erroneous statements were detected while we found
only 12 erroneous statements the manual evaluation. Adding the predicting
types by the KNN to the other features had good impact on the results of
SDValidate. However, the number of faulty statements decreases from 250
to 7 which is less than then total number of erroneous statements and even
after we apply the K-means the number increases from 7 to 10 but still less
that the total number of erroneous statements.

For each type of results, we present the comparison results table using the evalu-
ation metrics described in section 4.2.1.



48 Chapter 4 : Experiments

Table 4.7: Experiments on the chosen predicates

Predicate SDValidate SDValidate+KNN SDValidate+KNN+K-means Erroneous Triples
dbo:award 63 90 126 136
dbo:predecessor 4 8 23 28
dbo:education 75 86 135 145
dbo:owner 32 44 44 50
dbo:publisher 9 29 29 32
dbo:location 418 212 2310 0
dbo:region 250 7 10 12

Evaluation metrics for Result 1

In the following tables we present the values of the evaluation measures of the
predicates dbo:award, dbo:prodecessor and dbo:education.

Table 4.8: Comparison results on the predicate dbo:award

Algorithm Accuracy Precision Recall F-measure
SDValidate 0.9079 0.9000 1.000 0.9478
SDValidate + KNN 0.9419 0.9345 1.000 0.9661
SDValidate + K-means + KNN 0.9873 0.9850 1.000 0.9924

Table 4.9: Comparison results on the predicate dbo:prodecessor

Algorithm Accuracy Precision Recall F-measure
SDValidate 0.9012 0.8994 1.000 0.9470
SDValidate + KNN 0.9214 0.9194 1.000 0.9580
SDValidate + K-means + KNN 0.9824 0.9799 1.000 0.9898

Seeing these results we can affirm that using KNN for type prediction and k-means
for error detection with the SDValidate approach has a good impact on the results.
In fact, we notice that the values of the accurancy, the recall and the F-measure
have increased throught the three approaches. That means that both types and
paths features helped to detect new error statements.



Section 4.4 – Error Detection Evaluation 49

Table 4.10: Comparison results on the predicate dbo:education

Algorithm Accuracy Precision Recall F-measure
SDValidate 0.9043 0.8934 1.000 0.9832
SDValidate + KNN 0.9863 0.9832 1.000 0.9915
SDValidate + K-means + KNN 0.9863 0.9947 1.000 0.9915

Evaluation metrics for Result 2

In the following tables we present the values of the evaluation measures of the
predicates dbo:award, dbo:owner and dbo:publisher.

Table 4.11: Comparison results on the predicate dbo:owner

Algorithm Accuracy Precision Recall F-measure
SDValidate 0.9749 0.9722 1 0.9859
SDValidate + KNN 0.9981 0.9979 1 0.9989
SDValidate + K-means + KNN 0.9981 0.9979 1 0.9989

Table 4.12: Comparison results on the predicate dbo:publisher

Algorithm Accuracy Precision Recall F-measure
SDValidate 0.9368 0.9402 0.9972 0.9666
SDValidate + KNN 0.9898 0.9945 0.9972 0.9958
SDValidate + K-means + KNN 0.9898 0.9945 0.9972 0.9958

Seeing these results we can affirm that solely using KNN for type prediction had
improved the results. In fact, we notice that the values of the accurancy, the recall
and the F-measure have increased only throught the second approach. That means
that solely adding types features helped to detect new error statements.

Evaluation metrics for Result 3

In the following tables we present the values of the evaluation measures of the
predicates dbo:location. We only compare the two first approaches since SDVal-
idate detected correct statements as wrongs and applying k-means has increased



50 Chapter 4 : Experiments

this wrong detection. As explained above, we will not take the results of k-means
because the number of error triples generated is greater than the rest of them.

Table 4.13: Comparison results on the predicate dbo:location

Algorithm Accuracy Precision Recall F-measure
SDValidate 0.8962 1.000 0.8769 0.9344
SDValidate + KNN 0.9496 1.000 0.9496 0.9741

Seeing these results we can affirm missing types of entities lead to false error
detection. In fact, when we add the types features predicted by KNN we notice
that the values of the accurancy, the recall and the F-measure have increased.

Evaluation metrics for Result 4

In the following tables we present the values of the evaluation measures of the
predicates dbo:region.

Table 4.14: Comparison results on the predicate dbo:region

Algorithm Accuracy Precision Recall F-measure
SDValidate 0.8880 0.9945 0.8970 0.9434
SDValidate + KNN 0.9979 1.000 0.9992 0.9995
SDValidate + K-means + KNN 0.9991 1.000 0.9998 0.9998

Seeing these results we can affirm that applying KNN for type prediction has
changed a lot the results towards the best. In fact, there are an outstanding change
between the first and the second approach on the values of the accurancy, the
precesion, the recall and the F-measure. Also applying the k-means has increased
the results.

Conclusion

In this chapter, we have detailed the implementation of our approach with a
detailed description of the entire process. In addition, we have illustrated the
different simulations on real databases.



Section 4.4 – Error Detection Evaluation 51

With the use of evaluation measures, we have compared our methods with
SDValidate. The results obtained shows that our method is relevant and effective.



Conclusion

52



Conclusion 53


