
Université de Tunis

Institut Supérieur de Gestion

MÉMOIRE DE MASTER RECHERCHE

Spécialité

Sciences et Techniques de l'Informatique Décisionnelle

Option

 Informatique et Gestion de la Connaissance (IGC)

Meriem Laajimi

Sous la direction de:

Nadia Yaacoubi maitre assistant, ISG tunis
 Afef Bahri maitre assistant, ESC tunis

Evaluation of RDF Archiving strategies with Spark

Laboratoire RIADI

Année universitaire 2016 / 2017

M
a

s
t
e

r
 I

S
G

 T
u

n
is

/
O

c
t
o

b
r

e
 2

0
1

7

E
v
a
lu

a
ti
o
n
 o

f
R

D
F

 A
rc

h
iv

in
g
 s

tr
a
te

g
ie

s
 w

it
h
 S

p
a
rk

M

e
r

ie
m

 l
a

a
j
im

i

Acknowledgments

First and foremost, I would like to express my deepest gratitude to Allah for giv-
ing me the strength, patience and wisdom to complete this work.

I would like to express my special thanks of gratitude to my supervisors Dr Afef
Bahri and Dr Nadia Yaacoubi for their support, suggestions, guidance, care, mo-
tivations and great effort they made throughout my study.

I would also like to thank all my family and my friends for their love, encour-
agement and continuous support .

Finally, I would like to express my sincere gratitude to all of my professors of
the Higher Institute of management of Tunis.

i

Contents

Introduction 1

Part I : Theoretical Aspects 5

1 Preliminaries 6

1.1 Introduction . 6

1.2 Linked data . 6

1.3 Representation and Querying of Semantic Data 8

1.3.1 RDF Data Model . 8

1.3.2 SPARQL . 10

1.3.3 RDF Triple store . 11

1.4 From Big data to Linked data . 12

1.4.1 Big data paradigm . 12

1.4.2 Scaling up Linked data 13

1.5 Big Data Tools . 13

1.5.1 Hadoop framework: HDFS and MapReduce 13

1.5.2 Apache Spark . 16

ii

CONTENTS iii

1.5.3 MapReduce Vs Spark 18

1.6 Conclusion . 19

2 RDF Archiving Systems: Storage Strategies and Querying 20

2.1 Introduction . 20

2.2 Storage strategies for versionning RDF archives 21

2.2.1 Independent Copies . 21

2.2.2 Change-based approach 21

2.2.3 Time-stamp based approach 22

2.2.4 Hybrid approach . 23

2.3 Query types . 24

2.3.1 Version query . 24

2.3.2 Delta query . 25

2.4 Benchmarking RDF archiving systems 25

2.4.1 BEAR RDF archiving benchmark 26

2.4.2 EvoGen . 26

2.4.3 SPBv . 27

2.5 Discussion . 28

2.6 Conclusion . 29

Part II : Contributions 30

3 Proposed Approach: Evaluation of the RDF archiving strategies with
SPARK 31

3.1 Introduction . 31

3.2 A model for RDF dataset archives 32

3.2.1 RDF Datasets . 32

CONTENTS iv

3.2.2 RDF Datasets versionning 33

3.2.3 RDF datasets archives querying 34

3.3 RDF dataset archiving on Apache Spark 35

3.3.1 RDF dataset storing Apache Spark 35

3.3.2 RDF dataset querying with Spark SQL 36

3.3.3 From SPARQL to SPARK SQL 38

3.4 Data partitioning and query optimization 41

3.4.1 Data partitioning . 41

3.4.2 Spark Optimizer . 41

3.5 Conclusion . 44

4 Experimental study 45

4.1 Introduction . 45

4.2 Environment . 45

4.3 Dataset Description . 46

4.4 Evaluation criteria . 47

4.5 Query evaluation . 47

4.5.1 Version Materialization 47

4.5.2 Delta Materialization . 48

4.5.3 Single-version queries 49

4.5.4 Cross-version queries . 51

4.6 Conclusion . 53

Conclusion 55

Appendix 56

CONTENTS v

A RDF serialization formats 57

A.1 Conclusion . 59

References . 60

List of Figures

1.1 Linked Open Data . 7

1.2 RDF triple example . 9

1.3 RDF Graph Example . 9

1.4 SPARQL Query Example . 10

1.5 An SPARQL query result example 11

1.6 HDFS Architecture . 14

1.7 MapReduce workflow . 15

1.8 Apache Spark ecosystem . 17

1.9 Spark architecture . 18

2.1 Independent Copies Approach 21

2.2 Change based approach . 22

2.3 Time-stamp based approach . 23

2.4 Hybrid approach . 23

3.1 Example of RDF dataset versions. 33

3.2 Example of a Dataframe with RDF dataset attributes 36

vi

LIST OF FIGURES vii

3.3 SPARQL graph pattern shapes. 39

3.4 Query execution with data partition of single version and cross-
version queries. 42

3.5 Query execution without data partition of Version and Delta ma-
terialization queries. 43

4.1 Number of statements . 46

4.2 Version Materialization queries 48

4.3 Delta Materialization queries . 48

4.4 An example of some queries results: Card 49

4.5 Single version queries (Subject) 50

4.6 Single version queries (Object and predicate) 51

4.7 Cross-version queries: Star query shape 51

4.8 Cross-version queries: Chain query shape 52

A.1 RDF/N-triples example format 57

A.2 RDF/XML example format . 58

A.3 RDF/N3 example format . 59

List of Tables

2.1 Classification and examples of retrieval needs. 24

2.2 Processing of retrieval needs (level of complexity 28

4.1 Query evaluation performance for Star query (SQ) 52

4.2 Query evaluation performance for chain query (CQ) 53

viii

Introduction

The Linked Data paradigm promotes the use of the RDF model to publish struc-
tured data on the Web. As a result, several datasets have emerged incorporating
a huge number of RDF triples. Some datasets are cross-domain such as Db-
pedia and Freebase, others are dedicated to a specific domain (geography, Life
science, media, government, etc.) such as Bio2RDF1. The Linked Open Data
cloud2, as published in 22 August 2017 illustrates the important number of pub-
lished datasets and their possible interconnections. On another side, LODstats a
project constantly monitoring statistics reports 2,973 RDF datasets that incorpo-
rate approximately 149 billion triples. Note that these RDF datasets are automat-
ically populated by extracting information from different resources (Web pages,
databases, text documents) leading to an unprecedented volume of RDF triples.
Indeed, published data is continuously evolving and it will be interesting to man-
age not only a current version of a dataset but also previous ones. In fact, users
would like to query previous versions, compare different versions or to lookout
the evolution of a specific data among different versions. There is an emerging
interest on what we call archiving of Linked Open Data (Stefanidis, Chrysakis,
& Flouris, 2014; Fernández, Umbrich, Polleres, & Knuth, 2016; Meimaris & Pa-
pastefanatos, 2016) and several challenges need to be addressed.
The absence of a central control makes impossible the propagation and the track-
ing of changes to all the related parts. That is, semantic applications need to access
to the previous versions in order to query and track data over time. Thus, dealing
with cross-version or time-traversing queries becomes an important challenge for

1http://bio2rdf.org/
2Linking Open Data cloud diagram 2017, by Andrejs Abele, John P. McCrae, Paul Buitelaar,

Anja Jentzsch and Richard Cyganiak. Available at http://lod-cloud.net/

1

Introduction 2

archiving systems. Theses queries are very useful to identify the state of a dataset
at a given time, to compare different versions of a dataset and to analyze and mon-
itor the evolution process.
Three versionning strategies are adopted in RDF archiving systems and cited in
literature as follows: (a) Independent Copies (IC), (b) Change Based copies (CB)
or Deltas and (c) Timestamp-based approaches (TB) (Papakonstantinou, Flouris,
Fundulaki, Stefanidis, & Roussakis, 2016). Initial works on RDF dataset archiv-
ing are focusing on the two first approaches (Stefanidis et al., 2014; Fernández et
al., 2016). The first one is a naive approach since it manages each version of a
dataset as an isolated one. Obviously, scalability problem is expected due to the
large size of duplicated data across dataset versions. The delta-based approach
aims to resolve (partially) the scalability problem by computing and storing the
differences between versions. While the use of deltas reduces space storage, the
computation of full version on-the-fly may cause overhead at query time. There-
fore, archiving systems not only need to store and provide access to different ver-
sions, but should also be able to support various types of queries on the data that
a user may need to formulate (Fernández, Umbrich, & Polleres, 2015; Stefanidis
et al., 2014). In an archiving system, queries may serve different needs and focus
ranging from version or delta materialization to single-version or cross-version
queries also called time-traversal queries. The latter type of queries are the most
significant and complex one in terms of processing since queries are evaluated
across dataset versions. In this context, the independent copies strategy may al-
low an efficient response time for certain kind of queries (version materialization,
single version query) but needs to face scalability problems. To resolve this issue,
authors in (Stefanidis et al., 2014) propose hybrid archiving policies to take ad-
vantage of the independent copies archiving approach and the delta one. In fact, a
cost model is conceived to determine what to materialize at a given time: a version
or a delta.
Moreover, the emergent need for efficient web data archiving leads to recently
developed Benchmarking RDF archiving systems such as BEAR (BEnchmark
of RDF ARchives) (Fernández et al., 2015) and EvoGen (Meimaris & Papaste-
fanatos, 2016). The authors of the BEAR system propose a theoretical formaliza-
tion of an RDF archive and conceive a benchmark focusing on a set of general
and abstract queries with respect to the different categories of queries as defined
before. More recently, the EU H2020 HOBBIT3 project is focusing the prob-
lem of Benchmarking Big Linked Data. A new Benchmark SPBv was developed

3https://project-hobbit.eu/

Introduction 3

with some preliminary experimental results (Papakonstantinou, Flouris, Fundu-
laki, Stefanidis, & Roussakis, 2017). Similar to EvoGen, SPBv proposes a con-
figurable and adaptive data and query load generator.
Obviously, the fast increasing size of RDF datasets raises the need to treat the
problem of RDF archiving as a Big data problem. Many efforts has been done
to process RDF linked data with existing Big data processing infrastructure like
Hadoop or Spark (Naacke, Curé, & Amann, 2016; Schätzle, Przyjaciel-Zablocki,
Skilevic, & Lausen, 2016). Nevertheless, no works has been realized for man-
aging RDF archives on top of cluster computing engine. The problem is more
challenging here as Big data processing framework are not designed for RDF pro-
cessing nor for evolution management.

Aim and Scope

In this master thesis, we use the in-memory cluster computing framework SPARK
for managing and querying RDF data archives using independent copies and change
based approaches. We give a formal modeling of RDF dataset archives and change
operations. We propose a theoretical formalization of RDF versioning queries
equally defined using SPARK SQL syntax. Mapping rules from SPARQL to
SPARK SQL are proposed. We note that, different SPARQL query shapes may
produce a certain number of join operations between triple patterns. We show in
this master thesis how the use of version based query may increase this problem.
We propose an evaluation of main versioning queries on top of SPARK framework
using Scala. Different performance tests have been realized based on: versioning
approaches (Change Based or Independent Copy approaches), the types of RDF
archives queries, the number of versions, the shape of SPARQL queries and finally
the data partitioning strategy.

Introduction 4

Master Thesis Outline

This master thesis is organized into two main parts.
The first part, Theoretical aspects, is composed of two main chapter which are the
following:

• Chapter 1 presents basic concepts related to Linked Data, RDF and SPARQL
languages, then, we present the Big data concept and some key technologies
developed in this context.

• Chapter 2 presents existing approaches for the design and evaluation of RDF
archiving and versioning systems.

The second part of this master thesis presents our contributions and is com-
posed of two chapters:

• Chapter 3 presents our approach for RDF datasets archives modeling and
we provide a theoretical formalization of RDF versioning queries. SPARK
is used to query RDF dataset archives and mapping of SPARQL to SPARK
SQL is proposed.

• Chapter 4 presents an evaluation of RDF versioning queries on top of SPARK.

Finally, the conclusion summarizes all the work presented in this report and
proposes a future works.

Part I

Theoretical Aspects

Part I presents the theoretical aspects of this master's thesis. Chapter

1 introduces the basic concepts of linked data and RDF. Then, it

details the principles of big data including its challenges and

techniques. Chapter 2 gives an overview about the RDF archiving

systems including its storage strategies and querying.

Chapter 1
Preliminaries

1.1 Introduction

In this chapter, we give an overview of the basic concepts and background ter-
minology of our research work. Section 1.2 presents the Linked data paradigm.
Section 1.3 gives an overview of the RDF data model as well and the SPARQL
query language as the principles techniques used in the context of Linked data.
Section 1.4 presents the principles and challenges of Big data and section 1.5 in-
troduces some of the techniques developed in this context.

1.2 Linked data

The Linked Data paradigm was firstly introduced by Tim-Berners Lee in 2006
(Bizer, Heath, & Berners-Lee, 2009). It refers to a set of guidelines and best prac-
tices for publishing and interlinking structured data on the semantic web using
standard technologies such RDF and URI. The Linked Data may be seen as a
global data space containing thousands of datasets resulting from diverse domains
such as people, companies, books, scientific publications, films, music, television
and radio programs, genes, proteins, drugs and clinical trials, online communi-
ties, statistical and scientific data, and reviews. These datasets are illustrated by
the different colors in the Linked Open Data cloud depicted in figure 1.11.

1http://lod-cloud.net

6

Section 1.2 – Linked data 7

Figure 1.1: Linked Open Data Cloud

Berners-Lee summarizes the set of principles for publishing data on the Web
(Bizer et al., 2009):

• Use URI to name things.

• Use HTTP URIs so people can be looked up.

• When someone looks up for a URI, provide useful information via RDF (and
SPARQL).

• Include links to other URIs, so that they can discover more things.

Over the last few years, the number of datasets published in Linked Data has
increased from 12 RDF datasets in 2007, to more than 2 thousands RDF datasets
in 2017 and this number is continously increasing.

Section 1.3 – Representation and Querying of Semantic Data 8

1.3 Representation and Querying of Semantic Data

In this section we respectively present RDF and SPARQL query language and we
define the concept of RDF triple Store.

1.3.1 RDF Data Model

The Resource Description Framework (RDF) is a graph data model proposed by
the W3C as a standard for representing information about resources in the Web
(Huang, Abadi, & Ren, 2011). It provides a flexible mechanism to define metadata
describing real world objects. The basic construct in RDF is the triple (s,p,o)
called also RDF statement which is composed of the following three parts:

• Subject: It identifies the object of the triple that is being described.

• Predicate: It describes the relationship between subject and object.

• Object: It represents the value of the RDF triple.

A set of triples is also called an RDF graph which is used as a basis for expressing
information across different fields and domains. The different entities in the graph
are represented as vertex and the relationship between them as edges. The subject
and the object are denoted as vertices, while the predicate is represented as labeled
edge. We distinct three kinds of nodes in an RDF graph:

• URI node: node that corresponds to an URI (Uniform Resource Identifiers)
and is used to uniquely identify a resource.

• Blank node: does not have an identifier and it can not be referenced from
outside.

• Literal node: is used to represent property values such as texts, numbers and
dates.

In an RDF triple t = (s,p,o), the subject s is either an URI or a blank node, the
predicate p is an URI and the object o is either an URI, a blank node or a literal.
Thus, an RDF triple is formally defined as follows.

Section 1.3 – Representation and Querying of Semantic Data 9

Definition 1.1 (RDF triple) Given disjoint finite sets U, B and L denoting re-
spectively sets of URIs, blank nodes and Literals, a triple (s, p, o), t ∈ (I ∪ B) ×
I × I ∪ B ∪ L is s called RDF triple where s, p and o represent respectively the
subject, predicate and object of the triple.

Figure 1.2 gives an example of an RDF triple where the subject identified with
URI http://www.disco.unimib.it/go/45827 is “author” of the paper identified with
URI http://ceur-ws.org/Vol-1605/paper3.pdf.

Figure 1.2: RDF triple example (Spahiu, 2017)

Figure 1.3 illustrates an RDF graph. The vertices in the graph indicate that the
entity identified by the URI ”http://www.disco.unimib.it/go/45827” has type ’per-
son’, her name is ’Belerina Spahiu’ and her date of birth is ’9/10/1986’.

Figure 1.3: RDF Graph Example (Spahiu, 2017)

Section 1.3 – Representation and Querying of Semantic Data 10

1.3.2 SPARQL

SPARQL (Recursive acronym: SPARQL Protocol And RDF Query Language)
is the W3C (WWW Data Access Working Group) recommended language for
querying RDF data (Spahiu, 2017). A SPARQL query contains a set of triple
patterns called a basic graph pattern. SPARQL provides a set of analytic query
operations such as JOIN, SORT and AGGREGATE. We distinct four different
query variations:

• SELECT query: used to extract raw values from a SPARQL endpoint (a
service that accept queries and return result).

• CONSTRUCT query: used to extract information from the SPARQL end-
point and transform the results into valid RDF.

• ASK query: used to provide a simple True/False result for a query on a
SPARQL endpoint

• DESCRIBE query: used to extract an RDF graph from the SPARQL end-
point. The content of the query result is left to the endpoint to decide based
on what the maintainer deems as useful information.

Figure 1.4: SPARQL Query Example (Spahiu, 2017)

Figure 1.4 presents an example of a SPARQL query. The query begins with
PREFIX statements defining the abbreviation for the namespace (lines 01 to 03).
SELECT clause (line 05) contains a variable named “?uri”. The WHERE clause
is defined in line 06. Line 07 specifies that we need those resources that are of

Section 1.3 – Representation and Querying of Semantic Data 11

type Book, while line 08 states that we are looking for those resources for which
the author is “Haruki Murakami”. The result of the SPARQL query is shown in
figure 1.5.

Figure 1.5: An SPARQL query result example (Spahiu, 2017)

1.3.3 RDF Triple store

Triple store are databases designed for RDF data storage. The RDF datasets are
indexed in Triple store to facilitate the execution of SPARQL queries. The most
knows triple stores are Virtuoso (Wauer, Both, Schwinger, Nettling, & Erling,
2015) and Sesame (Broekstra, Kampman, & van Harmelen, 2002). On the other
side, many systems store the RDF data in relational database system (DBMS).

Section 1.4 – From Big data to Linked data 12

Each RDF statement is stored as a triple in one large table with a three-columns
schema (i.e. a column for subject, predicate and object).

1.4 From Big data to Linked data

1.4.1 Big data paradigm

For a long time, the volume and the variety of data have outstripped the capacity
of manual analysis and exceeded the capacity of conventional databases in some
case. The term Big Data can be defined as a large amount and complex datasets
that the traditional technologies can not process. Several dimensions is defined in
conjunction with big data, namely the 5V concept which denote: Volume, Variety,
Velocity Veracity and Value (Anuradha et al., 2015). The first dimension Volume
refers to the quantity of data collected and captured from different sources such as:
sensors, mobile device, social network. The second dimension Variety is about
the type of data that can be classified in different categories from structured, un-
structured, standard, semi-structured and raw data which are very difficult to be
handled by traditional systems. The third dimension Velocity refers to the speed
of generated data from different sources. The fourth dimension Veracity, the main
goal of data analysis is to extract useful information from high volume of data in
order to have good results. The last dimension Value is the most important aspect
in big data, we can have access to massive data but unless we can turn into value
it is become useless.
Obviously, the big data is omnipresent in many fields and sectors such as Business,
Finance, Medicine, Bioinformatics, social networks, etc. Therefore, big data man-
agement involves several tasks such extraction, storing, analysis and visualization.
Each task introduces critical challenges which can be summarized principally into
data inconsistency, scalability and timeliness. Datasets are collected from differ-
ent sources which may lead to data inconsistency, thus, pre-processing treatments
are necessary in order to improve data quality. The scalability issue deals with the
efficiency of processing capabilities to deal with continuously growing amounts
of data but the big challenge of big data is to guarantee response’s timeliness when
processing data streams. (Chen & Zhang, 2014). Several technologies of Big data
was conceived to deal with these challenges. An overview of theses technologies
is given in section 1.5.

Section 1.5 – Big Data Tools 13

1.4.2 Scaling up Linked data

Given that the web is growing rapidly and submerged by a huge amount of datasets,
we can associate it the notion of big data. Recently, the big data has been drawn
the attention of many researchers. Big Data and Linked Data can be seen to com-
plement in each other in two important ways. First, big data techniques can be
applied to Linked Data challenges. As described above, there has been a huge
growth in Linked Data over the past five years. Techniques developed in the Big
Data research community can be adopted to handle large amounts of Linked Data.
Second, Linked Data techniques can be applied to Big Data challenges. Big Data
can have a high level of variety and Linked Data techniques can be applied to the
problem. Linked Data tools can be used to enrich legacy content and improve data
discovery and integration. Interlinking datasets using a common format can help
to reduce data duplication.

1.5 Big Data Tools

Many tools have been proposed for processing massive data efficiently and man-
aging data distribution among multiple machines. Apache Hadoop and Apache
Spark are the most popular open source frameworks.

1.5.1 Hadoop framework: HDFS and MapReduce

Apache Hadoop is an open source framework which supports distributed process
and distributed storage (Anuradha et al., 2015). Two main subsystems compose
Apache Hadoop: the Hadoop Distributed File System (HDFS) for data storage
and the Map Reduce model for data processing.

HDFS

HDFS is a distributed and scalable file system (Anuradha et al., 2015). It stores a
large amount of data (typically in the range of gigabytes to terabytes) in reliable
manner by providing a highly fault tolerant file system. The reliability is achieving
by replicating data accros multiple nodes even if some machine crashes. The

Section 1.5 – Big Data Tools 14

HDFS architecture shown in figure 1.62 is composed of two kinds of nodes. A
name node (master) and a number of data nodes (workers). The master node takes
the charge of managing the name space by saving directories, opening and closing
files. It also stores the metadata which contains information like the number of
replication of blocks and the location of each block. In case of failure of name
node, the system provides the secondary name node connected with the primary
one. The workers nodes are used for storing and retrieving data blocks and ensure
several operations such as create, delete and replicate.

Figure 1.6: HDFS Architecture

MapReduce

MapReduce is a programming model invented by Google and developed by ya-
hoo, it has been widely used to parallelize the computation across a cluster of
machines (Dean & Ghemawat, 2008). It provides a parallel design pattern for
simplifying application developments in distributed environments. Obviously, ev-
ery MapReduce execution requires the master nodes and the workers. Indeed, the
master node distributes the task to the worker nodes. Concerning this phase, tasks

2https://hortonworks.com/apache/hdfs/

Section 1.5 – Big Data Tools 15

can execute two different functions: Map or Reduce (Memishi, Ibrahim, Pérez,
& Antoniu, 2016). A MapReduce workflow scenario, depicted in figure 1.7, is
defined as below:

• A map phase: The map function takes a key/value pairs as input and pro-
duces a list of key/value pairs as output and intermediate results.

• A shuffle phase :All the intermediate results are grouped by keys.

• A reduce phase : The reduce function invokes once for each key with asso-
ciated values and generates a list of output values as final results.

Figure 1.7: MapReduce workflow (Memishi et al., 2016)

The MapReduce paradigm has many advantages. We can cite among others:

• Scalable: because it stores and distributes large data sets on plenty of ma-
chines which operate in parallel.

• Flexible: since it can access to various new sources of data and also operates
on different types of data whether they are structured or unstructured.

• Fault tolerant: is ensured by the replication of the datasets on different ma-
chines in case of machine failure.

Apache Hadoop system contains a wide range of big data tools(Anuradha et al.,
2015) in order to facilitate the storage and make easy the analyzing and querying
of data. We present the most used ones:

Section 1.5 – Big Data Tools 16

• Hive: is a data warehouse that used the HiveQL language to analyze the data.
HiveQL seems like standard SQL but it provides faster and secure access to
the distributed data set.

• Hbase: is a distributed, scalable, an open NoSQL database implemented on
top of HDFS. It offers a real-time access to huge volume of multi-structured
data set.

• Pig: is a platform for analyzing large datasets that consists of a high-level
language ’the Pig Latin language’ to perform complex operations.

1.5.2 Apache Spark

Spark is an open source framework build to perform sophisticated analysis(Zaharia,
Chowdhury, Franklin, Shenker, & Stoica, 2010). It was developed by AMPLab at
the University of California, Berkeley in 2009 then the codes were donated to the
Apache Software Foundation in 2013 to become one of the Foundation’s top-level
projects in 2014. It is based on the concept of saving data in memory rather than a
disk and exploits in-memory computation for solving iterative algorithms. It also
supports multiple languages like Java, Scala, or Python and provides a powerful
and user friendly API (Application Programming Interface) for a better produc-
tivity.
The feature that makes Apache spark distinctive compared to Hadoop is the new
distributed memory abstraction called Resilient Distributed Data sets. The re-
silient distributed data (RDD) is a set of objects immutable and distributed across
a cluster machines that form the main core of Apache Spark. The RDDs allow
to rearrange the calculations as a goal to optimize the treatment. They are fault
tolerant since they can be recreated and recalculated if a partition is lost (Zaharia
et al., 2016a).
Two types of operations can be performed in an RDD: produce other RDDs (trans-
formations) or return values (actions):

• Transformation: This function apply such changement on RDD to returns a
new RDD. The transformation functions are for example map, filter, flatMap,
groupByKey, reduceByKey, aggregateByKey, pipe and coalesce.

• Actions: This function evaluates and returns a new value. Actions include
reduce, collect, count, first, take, countByKey, and foreach.

Section 1.5 – Big Data Tools 17

Spark ecosystem

Apache spark is an unified parallel computation project that contains multiple
components to support efficiently many complex applications. Figure 1.8 3 depicts
the Apache Spark ecosystem with its components (Meng et al., 2016):

• Spark core: It represents the most important component and it contains the
basic spark functionalities such as task scheduling, managing memory and
creating RDDs.

• Spark Streaming: This module is used for processing real-time data stream.
A series of RDDs compose theses data streams which provide the same op-
erations as typical RDDs enriched with new ones.

• Spark SQL: This module allows users to handle a variety of data sources
using SQL. Spark SQL extract, transform and load data in different formats
(JSON, Parquet, database).

• MLlib: MLlib is a machine learning library that contains many machine
learning algorithms such as K-means, SVM and decision trees.

• Spark GraphX: GraphX was designed to perform parallel computation of
graph’s algorithm such as PageRank and shortest path, etc.

Figure 1.8: Apache Spark ecosystem

Spark provides properties like scalability and fault tolerance similar to MapRe-
duce and allows the development of pipelines for processing complex data using
oriented acyclic graphs (DAG). It allows to share data in memory between graphs
so that multiple jobs can work on the same dataset.

3https://databricks.com/spark/about

Section 1.5 – Big Data Tools 18

Spark architecture

Apache spark loads at first the input data from an external data storage such as
HDFS, and Amazon S3 in order to create RDDs. A spark cluster is composed
essentially by the driver node and a set of spark workers. The driver instantiates
an object SparkContext to establish the connection to the cluster and hold in the
users driver program. Nevertheless, the cluster manager controls the resources
allocation, manages the errors and fixes the task scheduling to launch them to the
worker nodes. The workers execute the tasks as assigned by the driver and stored
data locally. The overall flow is described in figure 1.94.

Figure 1.9: Spark architecture

1.5.3 MapReduce Vs Spark

The MapReduce and Spark share obviously the same advantages by hiding the
complexity of task parallelism and allowing fault-tolerance. MapReduce seems
to be a good solution for processing a large volumes of data but it has several
limitations. In cluster computing, each map and reduce phase save operations in
the disk which engenders extra delay in execution. Equally, the replication of data
takes a lot of space in disk storage.

4https://www.analyticsvidhya.com/blog/2016/09/comprehensive-introduction-to-apache-
spark-rdds-dataframes-using-pyspark/

Section 1.6 – Conclusion 19

In order to remedy this limitations, Spark brings improvements to MapReduce
through the concept of RDD that allows to store data in memory and this engender
the increasing of the performance (ten hundred times more than the conventional
MapReduce) and allowing more flexibility. Apache spark is judged to be the most
suitable one because it uses the lineage concept to ensure fault-tolerance while
MapReduce requires to replicate data items among machines.

1.6 Conclusion

In this chapter, we defined the notion of Linked data, the RDF data model and the
SPARQL query language. We also present the Big data paradigm and we focused
on the way we may use it to scale up Linked data. We equally define some of
the techniques used in the context of Big data. In the next chapter we focus on
RDF archiving systems and we give a state-of-the-art of the different approaches
proposed for representing and querying RDF dataset archives.

Chapter 2
RDF Archiving Systems: Storage
Strategies and Querying

2.1 Introduction

Over the last decade, the published RDF data is continuously growing leading to
the explosion of the Web of Data and the associated Linked Open Data (LOD)
in various domains such as geographic information systems, people, companies,
films, music, genes, drugs, books, and scientific publications. Typically, the open
nature of the Web reflects the dynamicity of the Web of data where both the data
and the schema of RDF LOD datasets are constantly evolving (e.g information
enrichment, scientific knowledge is constantly growing). This evolution naturally
happens without pre-defined policy nor a central control. Afterward, there is a
need to build open data archiving systems having their own infrastructures in order
to preserve and query RDF data over time.
In this chapter, section 2.2 presents a state of the art of different RDF storage
strategies for versionning RDF archives. Section 2.3 defines principle versioning
queries and their application on RDF datasets. Finally, section 2.4 presents the
different Benchmarks proposed in the literature for RDF archiving and querying.

20

Section 2.2 – Storage strategies for versionning RDF archives 21

2.2 Storage strategies for versionning RDF archives

In the literature, three RDF versionning approaches have been proposed: Inde-
pendent Copies (IC), Change-based (CB), and Time-stamp approaches (Zablith et
al., 2015). We talk about hybrid approaches when the above techniques are com-
bined (Sande et al., 2013; Stefanidis et al., 2014). We present in the following the
principle of these approaches.

2.2.1 Independent Copies

Independent Copies is the basic approach where all the versions of an RDF dataset
are stored independently. This approach is used for managing RDF ontologies
(SemVersion (Völkel & Groza, 2006)), LOD datasets (Memento (de Sompel et
al., 2010)) and RDF archives in EvoGen (Meimaris & Papastefanatos, 2016) and
BEAR benchmarks (Fernández et al., 2016). A description of this approach is
depicted in figure 2.1.

Figure 2.1: Independent Copies Approach (Stefanidis et al., 2014)

The advantage beyond the use of the IC approach is that simple retrieval opera-
tions such as version materialization is efficient as all the versions are already ma-
terialized in the archive. Nevertheless, the IC approach faced the scalability issue
through the static information that is duplicated across versions. In the worst-case
scenario, where we have a large versions changed frequently, the space overhead
becomes huge.

2.2.2 Change-based approach

This approach treats the scalability issue by computing the differences between
versions and storing only the changes that should be kept with respect to the pre-
vious version also known as the delta (Troullinou, Roussakis, Kondylakis, Ste-

Section 2.2 – Storage strategies for versionning RDF archives 22

fanidis, & Flouris, 2016). This approach is used for versioning RDF datastore
in (Cassidy & Ballantine, 2007; IM, LEE, & KIM, 2012) and for RDF dataset
archiving in EvoGen (Meimaris & Papastefanatos, 2016) and BEAR (Fernández
et al., 2016) Benchmarks. The main asset of the change-based approach con-
cerns the modest space requirements as deltas are much smaller than the dataset
itself (figure 2.2). Nevertheless, the CB imposes additional computational costs
for computing and storing deltas as many queries would require the on-the-fly re-
construction of one or more full versions of the data. Equally, this strategy needs
an extra time overhead for delta propagation which involves the retrieving oper-
ations. For instance, as depicted in figure 2.2, in order to compute the difference
between two non consecutive versions V1 and V5 we need to materialize all the
versions that precede V5 (V2, V3 and V4) in order to retrieve the changes.

Figure 2.2: Change based approach (Stefanidis et al., 2014)

In order to improve the situation, different alternatives have been proposed such
as computing reverse deltas by storing a materialization of the current versions
and computing the changes with respect to this (Cassidy & Ballantine, 2007; IM
et al., 2012; Graube, Hensel, & Urbas, 2014).

2.2.3 Time-stamp based approach

This approach introduces the notion of time modelling in RDF where each triple
is annotated with its temporal validity (Gutierrez, Hurtado, & Vaisman, 2007;
Tappolet & Bernstein, 2009; Neumann & Weikum, 2010; Udrea, Recupero, &
Subrahmanian, 2010; Zimmermann, Lopes, Polleres, & Straccia, 2012). This
annotation allows to return all triples that have been created before a given time
t and were deleted after time point t and reconstructs the dataset version at any
given time point. This approach permits to save space by avoiding such repetitions
since the triples is annotated only when they are added or deleted. The BEAR

Section 2.2 – Storage strategies for versionning RDF archives 23

benchmark evaluates this approach on LOD RDF Archives in (Fernández et al.,
2016). In figure 2.3, we observe that each triple holds the time-stamp of the
version.

Figure 2.3: Time-stamp based approach

2.2.4 Hybrid approach

This approach combines the previous ones in order to take advantages of each
approach. The combination of Independent Copies and Change-Based approaches
is the most commonly used (Stefanidis et al., 2014). In fact, a cost-based model
is used to choose which versions (not eventually all) are materialized while deltas
are used to materialize the other versions if needed. The author of (Fernández et
al., 2016) introduces this approach in the last version of the BEAR benchmark.
As we can observe in figure 2.4, both versions (V1, V3 and V6) and deltas (δ1, δ3,
δ4) are stored.

Figure 2.4: Hybrid approach (Stefanidis et al., 2014)

Section 2.3 – Query types 24

2.3 Query types

In this section, we enumerate the different types of queries that have been pro-
posed in the literature. We can distinguish six different types of retrieval needs
shown in Table 2.1. The classification that we adopted considers the query type
(materialization or structered queries) and mainly focus (Version or Delta).

Focus
Type

Materialization Single time Cross time

Version Version material-
ization:
Get snapshot at
time ti.

Single-version
structured queries:
A query that asks
for the number
of friends that a
certain person has
at a given time.

Cross-version
structured queries:
A query that asks
about all the status
and updates of a
specific person
through time.

Delta Delta materializa-
tion:
Get delta at time ti.

Single-delta struc-
tured queries:
A query that asks
for the new friends
that a person ob-
tained between two
versions ti and t j.

Cross-delta struc-
tured queries :
A query that asks
about the changes
occurred in the
friends network
of a person (e.g.
friends added
and/or deleted).

Table 2.1: Classification and examples of retrieval needs.

In the following we present successively Versions and Delta based queries.

2.3.1 Version query

Version query consider complete versions. We distinct version materialization,
single version structured queries and cross version structured queries:

• Version Materialization: A basic demand in which we ask for a full current
version to be retrieved. This can be seen as simple, indeed, this is the most

Section 2.4 – Benchmarking RDF archiving systems 25

common feature provided by revision control systems and other large scale
archives. This kind of retrieval functionality still presents a challenge as the
size of triple RDF stores and datasets increases.

• Single-version structured queries: Structured queries performed on a spe-
cific version, not necessarily the newest one. In general, we may need to
perform version materialization before processing this kind of query.

• Cross-version structured queries: Structured queries must be satisfied across
different versions there by retrieving information common in many versions.
Nonetheless, it adds a novel complexity and called also time-traversal queries.

2.3.2 Delta query

Delta query considers the changes occurring between two versions. We distinct
delta materialization, single-delta structured queries and cross-delta structured
queries.

• Delta Materialization: This query asks for the difference (delta) between
two or more given versions. The deltas should be stored and computed.
Nonetheless, the evaluation of this query would need the on-the-fly recon-
struction of one or more of the non-materialized versions which engenders
an overhead at query time .

• Single-delta structured queries: Structured queries are performed on a spe-
cific delta instance of the dataset. This information focuses particularly on
the differences between two, not necessarily, consecutive versions.

• Cross-delta structured queries: Structured queries are evaluated on changes
of several versions of the dataset.

2.4 Benchmarking RDF archiving systems

Towards evaluating the efficiency of RDF archives is essential to test the scalabil-
ity of used storage techniques and the efficiency of the adopted querying strate-
gies. Three benchmarks have been proposed in the literature for querying evolving

Section 2.4 – Benchmarking RDF archiving systems 26

RDF data archives: BEAR (Fernández et al., 2015, 2016), EvoGen (Meimaris &
Papastefanatos, 2016) and SPBv (Papakonstantinou et al., 2017).

2.4.1 BEAR RDF archiving benchmark

BEAR (Fernández et al., 2015, 2016; Fernández, Umbrich, Polleres, & Knuth,
2017) is the first benchmark proposed for querying evolving RDF data archives.
BEAR is built in two systems using respectively Jena’s TDB store 1 and HDT
(Fernández, Martı́nez-Prieto, Gutiérrez, Polleres, & Arias, 2013). The authors
propose a theoretical foundations for the design of benchmark queries and pro-
vides semantics for RDF archives. Four archiving strategies are implemented:
independent copies, change based and time-based approaches in (Fernández et
al., 2016) and recently an hybrid approach is introduced in the last version of
the BEAR Benchmark. Five query operations are tested: version materialization,
delta materialization, version queries, cross-version join and change materializa-
tion.
Despite the detailed theoretical formalization of RDF benchmarking problem is
given by the BEAR system, a deep analysis must be done, in order to check out
the challenges needed to improve the performance of an RDF archiving systems:
the number of versions, the space needed to store a version, the type of query and
the difficulties encountered when answered on top of more than one version. The
aspect of optimization is not treated yet and a cost based model should be devel-
oped to decide if it will be more suitable to store a full version or a delta.
The BEAR system proposes a customizable generator for evolving synthetic RDF
data making them scalable to any dataset size and number of versions. Neverthe-
less, more works need to be realized to provide queries corresponding to real user
needs and to define more complex time-based queries.

2.4.2 EvoGen

Meimaris and al. have proposed a generator for evolving RDF data, named Evo-
Gen Benchmark (Meimaris & Papastefanatos, 2016). EvoGen extends the LUBM
ontology with 10 new classes and 19 new properties and implements a mecha-
nism that produces logs of the changes between consecutive versions. EvoGen is
configurable in terms of the archiving strategy (Independent copies, Deltas, etc.),

1https://jena.apache.org/dcoumentation/tdb/

Section 2.4 – Benchmarking RDF archiving systems 27

the number of versions and the number of changes. An adaptive query work-
load is then implemented based on the evolution aspects of the data. The Evo-
Gen ontolgy schema follows the DIACHRON model (Meimaris, Papastefanatos,
Pateritsas, Galani, & Stavrakas, 2014), a graph based approach for annotating
datasets with temporal information (time-based archiving approach). The system
is equally configurable to other types of archiving strategies such as independent
copies, delta-based and hybrid storage approaches.
The functionality of the system can be invoked through a Java API by importing
EvoGen Libraries. A Version Management component is implemented to sup-
port different types of archives with a change materialization module responsible
of creating a log of changes. The actual version of EvoGen provides adaptative
query workload generator based on the LUBM queries extended with variables
corresponding to a particular version or timeline.

2.4.3 SPBv

SPBv was developed in the context of the HOBBIT project2 to test the ability
of archiving system in order to manage efficiently evolving dataset and queries
(Papakonstantinou et al., 2017). It is based on the Linked Data Benchmark Coun-
cils (LDBC)3 Semantic Publishing Benchmark (SPB).
The SPBv is built on different components : a benchmark controller, a data gen-
erator, a task generator, an evaluation module and an evaluation storage. The
benchmark controller is responsible of scheduling tasks to the data generator and
the task generator.
The data generator uses seven core and three domains RDF ontologies for the data
production. The task generator consists of several instances running in parallel,
its main job to send the gold standard previously received from the data generator
to the evaluation storage. Then the former component re sends the gold standard
and the results reported by the benchmarke system to the Evaluation Module that
is responsible for evaluating the performance of the system.

2https://project-hobbit.eu/
3ldbc.council.org

Section 2.5 – Discussion 28

2.5 Discussion

Based on the state-of-the-art that we present in this chapter, we can conclude that
the scalability problem is an important issue in the context of RDF archiving sys-
tems. In fact, based on a qualitative classification of the complexity (low, medium,
high) required to satisfy each type of retrieval demand proposed in (Fernández,
Polleres, & Umbrich, 2015), we find that the majority of query types present High
or Medium level of complexity in IC and CB approaches (table 2.2). As the size
of RDF data is continuously growing, managing RDF dataset archives may be
seen as a Big Data problem. That is, it will be interesting to evaluate RDF archiv-
ing approaches using large scale frameworks namely Hadoop or SPARK. Based
on the fact that the temporal aspect of the RDF archives makes them suitable for
analysis and learning, we orient our choice to SPARK framework as it is more
adapted in this context than Hadoop.

Policies
RETRIEVAL NEED Indep-Copies

(IC)
Change-based
(CB)

Time-stamp
(TS)

Version Materialization Low Medium Medium
Delta Materialization Medium Low Low

Single-version struc-
tured queries

Medium Medium Medium

Cross-version struc-
tured queries

High High Medium

Single-delta structured
queries

High Medium Medium

Cross-delta structured
queries

High High Medium

Table 2.2: Processing of retrieval needs (level of complexity) (Fernández et al.,
2015)

Section 2.6 – Conclusion 29

2.6 Conclusion

In this chapter, we first present the state-of-the-art of the approaches for managing
evolving RDF dataset. We presented the basic strategies that archiving systems
follow for storing multiple versions of a dataset, the different query types and
we described the existing versioning Benchmarks along with their features and
characteristics. In the next chapter, we present our approach which consists on
using SPARK framework to evaluate RDF archiving strategies.

Part II

Contributions

Part II presents the contributions of this master thesis. Chapter 3

presents the theoretical aspects beyond the use of SPARK for

managing and querying RDF dataset archives. Chapter 4 provides the

experimental study realizing on the benchmark dataset.

Chapter 3
Proposed Approach: Evaluation of
the RDF archiving strategies with
SPARK

3.1 Introduction

The published RDF data in the Web is continuously evolving leading to an impor-
tant number of RDF datasets in the Linked Open Data (LOD). There is thus an
emergent need for efficient RDF data archiving systems. Obviously, the fast in-
creasing size of RDF datasets raises the need to treat the problem of RDF archiv-
ing as a Big data problem. As we have seen in the last chapter, the proposed RDF
archiving systems or benchmarks are built on top of existing RDF query process-
ing engine. Nevertheless, no work has been realized for managing RDF archives
on top of Big data processing frameworks. The problem is more challenging here
as these frameworks are not designed for RDF processing nor for evolution man-
agement.
The objective of this chapter is to present the theoretical aspects beyond the use
of SPARK for managing and querying RDF dataset archives: RDF datasets mod-
eling and querying; how to use SPARK query engines (SPARK SQL or GraphX)
for managing and querying RDF datasets versions; the rewriting of SPARQL into
SPARK SQL/GraphX and finally the discussion of query optimization issues.
This chapter is structured as follows: in section 3.2, we propose a formal model

31

Section 3.2 – A model for RDF dataset archives 32

of RDF dataset archives and we propose a theoretical formalization of RDF ver-
sioning queries. In section 3.3, the principle aspects beyond the use of SPARK to
manage and query RDF dataset archives are presented: from storing RDF datasets
to querying and optimization issues.

3.2 A model for RDF dataset archives

In this section, we propose a formal representation of RDF dataset, RDF dataset
archives and their relative versioning operations and we propose a theoretical for-
malization of RDF dataset versioning queries.

3.2.1 RDF Datasets

The Resource Description Framework (RDF) is a standard that supports the de-
scription of Web data resources. An RDF statement is a triple (s,p,o) where s
is the subject, p the predicate and o the object of the statement used to describe
resources and properties of the resources. More formally, given disjoint finite sets
I, B and L (IRIs,Blank nodes and Literals), (s,p,o) ∈ (I ∪ B) × I × (I ∪ B ∪
L) is called an RDF triple.
An RDF dataset is a collection of RDF graphs. While RDF graph has a model-
theoretic semantics which establishes when a model satisfies an RDF graph, no
formal semantics exist for RDF dataset. An RDF dataset is a set of RDF resources
URI associated with their description.

DS = {(URI1, (s1, p1, o1)), ..., (URIn, (sn, pn, on))}

We can identify three possible changes between two versions of a Dataset:

• The creation of a new URI with an RDF description.

• The deletion of an URI-RDF couple.

• The update of the RDF description associated to a given URI.

As the update of an RDF description is considered as a deletion followed with the
creation of a new URI-RDF couple, two possibles changes are considered in this
paper: create and delete.

Section 3.2 – A model for RDF dataset archives 33

3.2.2 RDF Datasets versionning

An RDF triple in an RDF archive is associated to a tag which corresponds to the
identification of its corresponding version. When we create an RDF triple we
associate it to the number of the current version. An RDF dataset version is a set
of RDF-URI couples associated with their version tags.

DS V1 = {(URI1, (s1, p1, o1),V1), ..., (URIn, (sn, pn, on),V1)}
DS V2 = {(URI1, (s1, p1, o1),V2), ..., (URIk, (sk, pk, ok),V2)}

...
DS Vm = {(URI2, (s2, p2, o2),Vm), ..., (URIk, (sk, pk, ok),V3)}

In version V2, a new RDF URI, URIk, is introduced. In version Vm, the URI1 is
deleted. Figure 3.1 shows an example of an evolving RDF dataset. In version
V2, the description of the URI1 (e:toto,e:hasJob,e:analyst) is replaced with the
description (e:toto e:hasJob e:dataSc). That is, the couple URI1, RDF description
of version V1 is deleted and a new couple URI-RDF description is inserted. In
version V3, the URI2 is deleted and a new URI, URI5 is inserted.

Figure 3.1: Example of RDF dataset versions.

The dataset versions of figure 3.1 are modeled as follows:

DS V1 = {(URI1, (e : toto, e : hasJob, e : analyst),V1), (URI2, (e : mimi, e : hasJob, e : develop),V1), ...}
DS V2 = {(URI1, (e : toto, e : hasJob, e : dataS c),V2), (URI2, (e : mimi, e : hasJob, e : develop),V2), ...}
DS V3 = {(URI1, (e : toto, e : hasJob, e : dataS c),V3), (URI3, (e : toto, e : hasDip, e : master),V3), ...}

As we will see in the following section, the version tag is defined as an attribute
in a SPARK table and we may query a version by indicating the number of its
version in a SPARK SQL query.

Section 3.2 – A model for RDF dataset archives 34

3.2.3 RDF datasets archives querying

Querying evolving RDF datasets data represents the biggest challenge behind the
use of archiving systems. We can classify six different types of retrieval needs re-
gards the query type (materialization or structured query) and the main focus (ver-
sion/delta) of the involved query and also we distinguish the time (single/cross-
time queries) for the structured queries:

• Version materialization: A basic query in which a full version is retrieved.
This kind of retrieval functionality presents a real challenge when the number
of RDF triples increases. Depending on what we use as an archiving strategy,
this query may either retrieve already fully materialized versions in case of
Independent Copy based approach or reconstructs a specific version based
on the associated changes or deltas for Change-based approach. Given a
dataset archive DA = {DS V1 ,DS V2 , ...,DS Vn}, the version materialization of
a dataset at a given version Vi is defined as follows:

Mat(Vi) = {(URI, (s, p, o),Vi)}

• Delta materialization: Theses queries are performed on two versions to
detect the changes occurring at a given moment. Given a dataset archive
DA, the delta materialization of the difference between two versions Vi and
V j of a dataset which corresponds to the RDF description d = (URI, (s, p, o))
that belong to Vi and do not belong to V j and viceversa:

Delta(Vi,V j) = {(d,Vi)|(d,V j) < V j} ∪ {(d,V j)|(d,Vi) < Vi}

• Single-version query: An RDF query performed on a specific version.

[[Q]]Vi = {(URI, (s, p, o),Vi)|σs,p,o(Q) ⊆ Vi}

where σ is a function which replaces eventual variables of query Q with
values in (s, p, o).

• Cross-version structured queries: Also named time-traversal queries. These
queries are evaluated across different versions.

Join(Q1,Vi,Q2,V j) = [[Q1]]Vi ./ [[Q2]]V j

Section 3.3 – RDF dataset archiving on Apache Spark 35

3.3 RDF dataset archiving on Apache Spark

In this section, we present the main features of Apache SPARK cluster computing
framework. We present the SPARK SQL query engine and we show how can
we use it to formalize RDF versioning queries. Finally, we propose a formal
presentation of the mapping of SPARQL to SPARK SQL.

3.3.1 RDF dataset storing Apache Spark

Apache Spark (Zaharia et al., 2016b) is a main-memory extension of the MapRe-
duce model for parallel computing that brings improvements through the data-
sharing abstraction called Resilient Distributed Dataset (RDD) (Zaharia et al.,
2012) and Data frames offering a subset of relational operators (project, join and
filter) not supported in Hadoop. Spark also offers two higher-level data accessing
models, an API for graphs and graph-parallel computation called GraphX (Graube
et al., 2014) and Spark SQL, a Spark module for processing semi-structured data.
As the RDF data model is interpreted as a graph and processing SPARQL can
be seen as a subgraph query pattern matching, GraphX seems to offer a natural
way for querying RDF data (Schätzle, Przyjaciel-Zablocki, Berberich, & Lausen,
2015). Nevertheless, GraphX is optimized to distribute the workload of highly-
parallel graph algorithms, such as PageRank, that are performed on the whole
graph. However, this process is not adapted for querying RDF datasets where
queries define a small subgraph pattern leading to highly unbalanced workloads
(Schätzle et al., 2015; Naacke et al., 2016).
SPARK SQL (Armbrust et al., 2015) is a SPARK module that performs relational
operations via a DataFrame API offering users the advantage of relational pro-
cessing, namely declarative queries and optimized storage. SPARK SQL supports
relational processing both on native RDDs or on external data sources using any
of the programming language supported by SPARK, e.g, Java, Scala or Python
(Armbrust et al., 2015). SPARK SQL can automatically infer their schema and
data types from the language type system. Equally, SPARK SQL allows for query-
ing semi-structured and supports query federation allowing relational operations
to be performed on disparate sources. All these features are built on the Catalyst
framework which is claimed to be a highly extensible optimizer for SPARK SQL
query processing (Armbrust et al., 2015).

Section 3.3 – RDF dataset archiving on Apache Spark 36

3.3.2 RDF dataset querying with Spark SQL

SPARK SQL offers the users the possibility to extract data from heterogeneous
data sources and can automatically infer their schema and data types from the
language type system (e.g Scala, Java or python). In our approach, we use SPARK
SQL for querying and managing the evolution of Big RDF dataset. An RDF
dataset stored in HDFS is mapped into a SPARK Dataframes (equivalent to tables
in a relational database) with columns corresponding respectively to the subject,
property, object and eventually a tag of the corresponding version.
Figure 3.2 shows a view of a part of a dataframe containing two versions of the
RDF dataset defined on the example used in the previous section.

Figure 3.2: Example of a Dataframe with RDF dataset attributes

In order to obtain a view of a dataframe named “table”, for example, we execute
the following SPARK SQL query:

SELECT * FROM table

When we want to materialize a given version, V1 for example, the following
SPARK SQL query is used:

SELECT Subject,Object,Predicate FROM table WHERE Version =’V1’

Another advantage beyond the use of SPARK SQL for the RDF dataset archiving
is the scalability of RDF change detection issue. Many approaches implement
change detection algorithms on the MapReduce framework (Ahn, Im, Eom, Zong,
& Kim, 2014). Using SQL SPARK, we can easily detect the change between two
different versions by executing a simple SQL SPARK query:

SELECT Subject,Predicate,Object FROM table WHERE Version=’Vi’
MINUS
SELECT Subject,Predicate,Object FROM table WHERE Version=’V j’

Section 3.3 – RDF dataset archiving on Apache Spark 37

Using SPARK SQL, we can define RDF dataset archiving queries as follows:

• Version materialization: Mat(Vi).

SELECT Subject,Object,Predicate FROM table WHERE Version =’Vi’

• Delta materialization: Delta(Vi,V j).

SELECT Subject,Predicate,Object FROM table WHERE Version=’Vi’
MINUS
SELECT Subject,Predicate,Object FROM table WHERE Version=’V j’
UNION
SELECT Subject,Predicate,Object FROM table WHERE Version=’V j’
MINUS
SELECT Subject,Predicate,Object FROM table WHERE Version=’Vi’

• Single-version query: [[Q]]Vi . We suppose here a simple query Q which
asks for all the subject in the RDF dataset (mapping a SPARQL query into
a SPARK SQL query is an important issue and will be treated separately in
the next section).

SELECT Subject FROM table WHERE Version=’Vi’

• Cross-version structured query: Join(Q1,Vi,Q2,V j). We suppose that the
two queries concerns as a part the subject column. What we need here is
a join between the two query results. We define two dataframe tablei and
table j containing respectively the version Vi and V j. The cross-version query
is defined as follows:

SELECT * FROM tablei

INNER JOIN table j

ON tablei.Subject = table j.Subject

We note that, for more clarity, we have supposed in this section the use of simple
single-version and cross-version queries. Nevertheless, in real world applications,
complex SPARQL query are used and a mapping from SPARQL query to SPARK
SQL is needed.

Section 3.3 – RDF dataset archiving on Apache Spark 38

3.3.3 From SPARQL to SPARK SQL

SPARQL is a subgraph matching query language. A S elect SPARQL query is of
the form (W, P), where W is a finite set of variables and P is a graph pattern. The
evaluation of a query pattern P on an RDF graph G consists on subgraph matching
of the graph pattern P against the graph G based on a set of mappings σ from W
to the terms of G. This is can be formally defined as follows (Arenas, Gutierrez,
& Pérez, 2009):

[[P]]G = { σ : W −→ T | domain(σ)= var(P) ∩ W and σ(P) ⊆ G }

A SPARQL graph pattern is defined recursively as follows:

• A triple pattern t is a graph pattern.

• If P1 and P2 are graph patterns then (P1 AND P2) and (P1 UNION P2) are
graph patterns.

• If P is a graph pattern and R a value constraint then (P FILTER R) is a graph
pattern.

SPARK SQL is used in (Naacke et al., 2016; Schätzle et al., 2016) for querying
RDF big data where a query compiler from SPARQL to SPARK SQL is provided.
That is, a FILTER expression can be mapped into a condition in Spark SQL while
UNION, OFFSET, LIMIT, ORDER BY and DISTINCT are mapped into their
equivalent clauses in the SPARK SQL syntax.
SPARQL graph pattern can have different shapes which can influence query per-
formance. Depending on the position of variables in the triple patterns, SPARQL
graph pattern may be classified into three shapes (figure 3.3):

1. Star pattern: this query pattern is commonly used in SPARQL. A star pattern
has diameter (longest path in a pattern) one and is characterized by a subject-
subject joins between triple patterns.

2. Chain pattern: this query pattern is characterized by object-subject (or subject-
object) joins. The diameter of this query corresponds to the number of triple
patterns.

3. Snowflake pattern: this query pattern results from the combination of many
star patterns connected by short paths.

Section 3.3 – RDF dataset archiving on Apache Spark 39

Figure 3.3: SPARQL graph pattern shapes.

When we query RDF dataset archives, theses query shapes concerns single version
([[Q]]Vi) and cross-version queries (Join(Q1,Vi,Q2,V j)) where Q may have one
of the defined shapes. We show in the following how we proceed for different
SPARQL query patterns:

• Star pattern: given a SPARQL query pattern (?X, hasDip ?Y, ?X hasJob ?Z),
we need to create two dataframes d f1 and d f2 as follows:

d f1= “SELECT Subject, Object FROM table
WHERE Predicate = ‘hasDip”’
d f2= “SELECT Subject, Object FROM table
WHERE Predicate = ‘hasJob”’

The query result is obtained as a join between dataframes d f1 and d f2:

SELECT * FROM d f1

INNER JOIN
d f2 ON d f1.Subject = d f2.Subject

• Chain pattern: given a SPARQL query chain with two triples (?X, hasJob
?Z, ?Z hasSpec ?Z), we need to create a dataframe for each triple:

d f1= “SELECT Subject, Object FROM table
WHERE Predicate = ‘hasJob”’
d f2= “SELECT Subject, Object FROM table
WHERE Predicate = ‘hasSpec”’

Section 3.3 – RDF dataset archiving on Apache Spark 40

The query result is obtained as a join between dataframes d f1 and d f2:

SELECT * FROM d f1

INNER JOIN
d f2 ON d f1.Object = d f2.Subject

We note that here the number of join operations depends on the number of
query triples. A chain query with n triples ti needs n-1 joins:

join(join(join(join(t1, t2), t3), t4), ..., tn)

• Snowflake pattern: the rewritten of snowflake queries follows the same prin-
ciple and may need more join operations depending equally on the number
of triples used in the query.

For single version query [[Q]]Vi , we need to add a condition on the version for
which we want to execute the query Q. Nevertheless, the problem becomes more
complex for cross-version join query Join(Q1,Vi,Q2,V j) as other join operations
are needed between different versions of the dataset. Two cases may occur:

1. Cross-version query type1: this type of cross-version queries concerns the
case where we have one query Q on two or more different versions. For
example, to follow the evolution of a given person career, we need to execute
(?X hasJob ?Z) on different versions. Given a query Q and n versions, we
denote T1,...,Tn the different results obtained by executing Q on versions
V1,...,Vn. The final result is obtained by realizing the union of the different Ti.
What we can conclude here is that the number of versions does not increase
the number of joins which depends only on the shape of the query.

2. Cross-version query type2: the second case occurs when we have two or
more different queries Q1, Q2,...,Qm on many different versions. For exam-
ple, we may need to know if the diploma of a person ?X has any equivalence
in RDF dataset archive:

Q1 :?X hasDip ?Y on version V1

Q2 :?Y hasEqui ?Z on versions V2, ...,Vn

Given T1,...,Tn the different results obtained by executing Q1, Q2,...,Qn, re-
spectively, on versions V1,...,Vn, the final result is obtained with a combina-
tion of join and/or union operations between the Ti. In the worst case we
may need to compute n-1 joins:

join(join(join(join(T1,T2),T3),T4), ...,Tn)

Section 3.4 – Data partitioning and query optimization 41

That is, for cross version query type2, the number of joins depends on the
shape of the queries as well as the number of versions.

3.4 Data partitioning and query optimization

In this section, we define data partitioning and we discuss its use in the context
of RDF datasets. We present then the principle that we adopt to partition RDF
datasets for efficiently executing: version materialization, delta materialization,
single version and cross versions queries. Then, we present Spark Optimizer Cat-
alyst and we discuss its use in our context.

3.4.1 Data partitioning

Ihe principle that we adopt for the partition of the data in case of single version
and cross-version queries (figure 3.4) is presented as follows:

• First of all, we load two RDF files (version V1 and version V2) from HDFS
as input. The input RDF files are assumed to be in a N-triple format that
represents one triple in a single line.

• Then, a mapping steps from RDF files into dataframes with corresponding
columns Subject, Object, Predicate and a tag of the version.

• We adopt a partitioning by RDF subject for each version.

• The SPARK SQL engine processes the partitioning parts stored in relational
database and the query result is returned.

Concerning Version and delta materialization queries, we adopt the same process
without partitioning the data (figure 3.5). In fact, as all the data (version or delta)
will be loaded, no partition is needed.

3.4.2 Spark Optimizer

SPARK optimizer Catalyst generates multiple physical plans and compares them
based on cost. In the actual version of SPARK SQL (Armbrust et al., 2015), Select

Section 3.4 – Data partitioning and query optimization 42

Figure 3.4: Query execution with data partition of single version and cross-version
queries.

Section 3.4 – Data partitioning and query optimization 43

Figure 3.5: Query execution without data partition of Version and Delta material-
ization queries.

join queries benefit from cost-based optimization and broad cast join are used for
small relations. That is, given a chain pattern SPARQL query (t1,t2,t3), Catalyst
generates a physical plan by computing a cross product between t1 and t3 before

Section 3.5 – Conclusion 44

joining with t2.
Catalyst optimizer may be extended with user defined rules in order to fulfill more
efficient query execution plans (Armbrust et al., 2015). We believe that many
works can be done on this context if we want to adapt the execution plan by
taking into consideration, the size of a version, the number of versions and the
shape of used queries. In the actual status of our work, we use Catalyst without
any extension.

3.5 Conclusion

In this chapter, we present the main contribution of our master thesis which con-
sists on the use of SPARK to manage and query RDF dataset archives. After
giving a formal modeling of RDF dataset archives and change operations, we
propose a theoretical formalization of RDF versioning queries and we propose
a formal rewritten of theses queries with SPARK SQL. What we can conclude
is that many criteria have to be considered when we realize experimentation: the
versioning strategy, the types of versioning queries, the shape of SPARQL queries,
the number of versions and eventually, the partitioning strategy. The evaluation
and the interpretation of the experimental results given in chapter 4 provides an
effective idea about the works that we may need to do for query optimization as
we can see the real impact of Catalyst execution plan on the query performance.

Chapter 4
Experimental study

4.1 Introduction

In order to evaluate the RDF archiving systems, we performed different types of
queries. We present in this chapter an experimental study realized on benchmark
datasets. The effectiveness of the proposed approach is evaluated in terms of run-
ning query time .
This chapter is organized as follows: Section 4.2 details experimental environ-
ment. Section 4.3 describes the evaluation criteria to test the performance of our
proposed approach and finally, section 4.4 presents experimental results obtained
on the different kind of queries.

4.2 Environment

For fairness, the experiments are performed on single machine in local mode
where the node has 4 cores (Intel Corei7-7500U Proceesor up to 3.5ghz), 12GB
of RAM and 1T of disk. Experiments were realized using Apache Spark version
2.1.1, Apache Hadoop version 2.7.3 and Ubuntu 16.04 and all experiments were
implemented in scala version 2.1.1. We use the synthetic data (N-triplet) of the
Benchmark BEAR1.

1https://github.com/webdata/BEAR

45

Section 4.3 – Dataset Description 46

Apache Spark propose four programming APIs: Scala, Java, Python and recently
R. The reason why we choose Scala is because Scala is a powerful language
adopted by several developers and researchers especially when we are talking
about Big data tools (Odersky et al., 2004). Equally, Spark is written in Scala so
knowing Scala coding make it easy for us to understand Spark functionalities and
to modify, if needed, some of them.

4.3 Dataset Description

As mentioned in the previous section, we are using the BEAR dataset. RDF
archive data monitor more than 650 different domains across time and composed
of 58 snapshots, i.e. 58 versions. Each snapshot consists of triples annotated
with their RDF document provenance in N-triple format. Figure 4.1 describes the
number of statements of each version in different policies: Independent Copies
and Change based. Each snapshot consists of roughly 500m triples, the adds and
deletes statements are also depicted in the same figure.

Figure 4.1: Number of statements (Fernández et al., 2017)

Section 4.4 – Evaluation criteria 47

4.4 Evaluation criteria

The evaluation criteria used for experimentation are defined as follows:

• Versioning strategies: change based or independent copy.

• Types of versionning queries: version materialization, delta materialization,
single version and cross-version queries.

• The shape of SPARQL queries: Star or Chain.

• Number of versions: from 1 to 58 versions.

• Partitioning: the data was hash partitioned by RDF subject across multiple
nodes.

4.5 Query evaluation

In the following we present the evaluation of versionning queries on top of SPARK
framework. The evaluation concerns four query types: Version materialization,
delta materialization, single version and cross version queries respectively.

4.5.1 Version Materialization

The content of the entire version is materialized. For each version, the average
execution time of the queries was computed. Plots presented in figure 4.2 show
the execution times of version materialization queries with Independent Copy
(IC) and Change-based (CB) archiving strategies. The obtained results show that
the execution times obtained with IC strategy are approximately constant with a
small variation caused by the changes occurring on the size of the used versions.
Equally, the execution times of IC approach show better result then the ones ob-
tained with CB approach. In fact, versions in CB approach are not already stored
and need to be computed each time we want to query a given version.

Section 4.5 – Query evaluation 48

Figure 4.2: Version Materialization queries

4.5.2 Delta Materialization

In order to observe real differences between versions, we use an increasing interval
of 5 versions between the ones for which we want to compute the deltas. That,
is we compute Delta(V0,Vi) where i ∈ {5, 10, 15, , 50, 55.}. Based on the plots
shown in figure 4.3 , we may observe that the execution times obtained with IC
strategy are approximately constant and show better results compared to the ones
obtained with CB approach. In fact, given a query Delta(V0,Vi) executed with
CB approach, the difference between the two versions are not necessarily stored
and need to be computed on the fly. As the version Vi is not stored we need to be
compute it based on stored deltas between V0 and Vi.

Figure 4.3: Delta Materialization queries

Section 4.5 – Query evaluation 49

4.5.3 Single-version queries

We use only query with one triple pattern (pattern shapes are evaluated with cross-
version queries) and we make different variations with subject, predicate and ob-
ject based queries. Before giving the query execution times, figure 4.4 presents
the carnality’s of single version query results in order to track the evolution of the
used dataset.

Figure 4.4: An example of some queries results: Card

Section 4.5 – Query evaluation 50

Concerning execution times, The obtained results are shown in figure 4.5 and
4.6 respectively. Figure 4.5 concerns single version queries where the subject is
given in the query whereas the object and/or the predicate correspond to what we
ask for.

Figure 4.5: Single version queries (Subject)

In the other hand, figure 4.6 concerns single version queries where the object
and/or the predicate are given in the query whereas the subject is what we ask
for. The queries are executed on versions with different sizes. The analysis of
the obtained plots shows that the use of partitioning ameliorates considerably the
query execution times. Equally, as no join operations are needed for this kind of
queries, the use of partition does not variate with the size of the used versions and
is approximately constant. As we have seen in Chapter 3, SPARQL queries may
have different shapes (Star, Chain and snowflake) inducing a certain number of
join operations. In the following section, we will observe how the execution of
theses queries will be affected with the size/number of versions. Equally, we will
observe to what extend the use of partition allow as to overcome this issue.

Section 4.5 – Query evaluation 51

Figure 4.6: Single version queries (Object and predicate)

4.5.4 Cross-version queries

In this section, we focus on Cross-version queries and we present a series of tests
realized on Star and Chain query shapes. Figure 4.7 concerns Star query shape
and 4.8 show the obtained execution times for Chain queries. As we can observe,
the use of partitioning ameliorates execution times for Star and Chain queries.

Figure 4.7: Cross-version queries: Star query shape

Section 4.5 – Query evaluation 52

Figure 4.8: Cross-version queries: Chain query shape

We give in table 4.1 and table 4.2 an overview of the execution times obtained
with Star and Chain queries respectively. As we can see, the obtained execution
times is deeply ameliorated, for the two query shapes, when we use partition.
Nevertheless, eventhough we use partitions, the execution times obtained with
Star/Chain queries drop or fall depending on the size of the version. The variation
of execution times is not the same for the two query shapes.

Versions Triples SQ without parti-
tions (ms)

SQ with parti-
tions (ms)

Version 1 30,035,245 23644.358 7399.109

Version 2 27,100,720 26232.014 7806.819

version 3 29,152,464 25864.583 7194.007

version 4 27,827,475 23441.38 6949.075

version 5 27,377,065 28657.241 7297.64

version 6 26,765,320 23267.585 7851.598

Table 4.1: Query evaluation performance for Star query (SQ)

As we can see in table 4.1, the execution times obtained for Star queries do not
vary considerably with the size of the versions (figure 4.6). This is due to the fact
that for Star queries, the number of joins operations do not increase with the size
of the version.

Section 4.6 – Conclusion 53

Concerning Chain queries, we can see that the execution times deeply increase
when we rise up the size of the version (table 4.2). In fact, as we have seen in
Chapter 3, the execution of Chain queries needs more join operations then the ex-
ecution of Star shape ones.

Versions Triples CQ without parti-
tions (ms)

CQ with parti-
tions (ms)

Version 1 30,035,245 31168.411 20743.833

Version 2 27,100,720 30762.349 9979.434

version 3 29,152,464 32297.495 25697.606

version 4 27,827,475 31969.248 15023.631

version 5 27,377,065 32080.286 11793.13

version 6 26,765,320 33147.345 15540.856

Table 4.2: Query evaluation performance for chain query (CQ)

4.6 Conclusion

In this chapter, we described the experimental environment then we enumerated
the different evaluation criteria and we performed several experiments on different
kind of queries. We conclude that the efficiency of our proposed approach is
satisfied through the use of partitioning by RDF subject in case of single-version
and cross-version query. Nevertheless, when we use complex queries (e.g Chain
query shape), the execution times obtained with partitions are affected with the
size of the used versions. This issue may be resolved by using other partition
strategies by taking into consideration the query pattern and/or by extending the
execution plan of Spark Catalyst optimizer.

Conclusion

The primary focus of this master thesis was studying the preliminaries and the
state-of-art approaches for managing and benchmarking evolving RDF data. We
presented the basic strategies that archiving tools follow for storing multiple ver-
sions of a dataset and we described the existing archiving benchmarks along with
their features and characteristics. Therefore, the number and the size of RDF
dataset keep growing at a fast pace and confronts the problem of RDF archiving
as a Big data problem.
In this context, we proposed an evaluation of RDF dataset archiving strategies
with SPARK which is designed for managing and querying RDF data archives
using both Independent Copies (IC) and Change based (CB) approaches. Besides,
we defined a theoretical formalization of RDF versioning queries using SPARK
SQL syntax. We implemented the state of art approaches policies with spark scala.
Several criteria has been considered to evaluate the performance of RDF archiv-
ing systems basically the versioning approaches (IC or CB), the types of RDF
archives queries (version materialization, delta materialization, single version and
cross version), the number of versions, the shape of SPARQL queries and the data
partitioning strategy.
Results clearly confirm that the use of partitioning in SPARK shows an amelio-
ration of the execution times compared with the results obtained without parti-
tioning. Nevertheless, when we use complex queries (e.g Chain query shape), the
execution times obtained with partitions are affected with the size of the used ver-
sions.
As a future work, we consider that cross-version queries are an important query
type that need more investigation. Queries corresponding to real users needs have
to be defined. In fact, analyzing the evolution of data across time is an impor-

54

Conclusion 55

tant issue and does not need to be proved. That is, if we want to analyze the
evolution of data or to compare different data evolution shapes or behaviour over
time, we need to look forward the amelioration of the execution time. Different
issues need to be considered. Among other, the partitioning strategy (Schätzle
et al., 2016), the execution plan of join operations (Naacke et al., 2016) and a
cost-based model will be useful to re-partition the data for more complex queries
(chain or snowflake) (Naacke et al., 2016).

Appendix

In this appendix, we will present the different RDF serialization

formats.

Appendix A
RDF serialization formats

In this Appendix, we introduce a family of alternative text-based RDF serializa-
tions whose members have the same origin, but balance differently between read-
ability for humans and machines.

N-triples

The N-Triple notation is very straightforward, each line of output in N-Triple
format represents a single statement containing a subject, predicate and object. It
is written as separate line where the URI is written between angle brackets 〈and〉
and terminated by a period (.) The files with N-Triples have the .nt extension.The
figure A.1 represent the N-Triple example format.

Figure A.1: RDF/N-triples example format (Spahiu, 2017)

57

58

RDF/XML

The RDF/XML is one of the format for representing RDF triples .It defines a
normative syntax for serializing RDF graphs as XML documents.It is built up
from a series of smaller descriptions, each of which traces a path through an RDF
graph. These paths are described in terms of the nodes (subjects) and the links
(predicates) that connect them to other nodes (objects).The figure A.2 represent
the RDF/XML example format .

Figure A.2: RDF/XML example format (Spahiu, 2017)

N3

N3 is a language for expressing data and rules. It extends RDF with features such
as variables, universal and existential quantification. The RDF/N3 example format
is shown in figure A.3.

Turtle

An Rdf sysntax is a text-based serialization format. It is an extension of N-Triples.

Section A.1 – Conclusion 59

Figure A.3: RDF/N3 example format (Spahiu, 2017)

A.1 Conclusion

In this Appendix, we have presented the different serialization format.In our work,we
are using the N-triple format for managing and querying RDF archive dataset.

References 60

References

Ahn, J., Im, D., Eom, J., Zong, N., & Kim, H. (2014). G-diff: A grouping
algorithm for RDF change detection on mapreduce. In Semantic technol-
ogy - 4th joint international conference, JIST 2014, chiang mai, thailand,
november 9-11, 2014. revised selected papers (pp. 230–235).

Anuradha, J., et al. (2015). A brief introduction on big data 5vs characteristics
and hadoop technology. Procedia Computer Science, 48, 319–324.

Arenas, M., Gutierrez, C., & Pérez, J. (2009). On the semantics of SPARQL. In
Semantic web information management - A model-based perspective (pp.
281–307).

Armbrust, M., Xin, R. S., Lian, C., Huai, Y., Liu, D., Bradley, J. K., . . . Zaharia,
M. (2015). Spark SQL: relational data processing in spark. In Proceed-
ings of the 2015 ACM SIGMOD international conference on management
of data, melbourne, victoria, australia, may 31 - june 4, 2015 (pp. 1383–
1394).

Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked data - the story so far. Int.
J. Semantic Web Inf. Syst., 5(3), 1–22.

Broekstra, J., Kampman, A., & van Harmelen, F. (2002). Sesame: A generic
architecture for storing and querying RDF and RDF schema. In The seman-
tic web - ISWC 2002, first international semantic web conference, sardinia,
italy, june 9-12, 2002, proceedings (pp. 54–68).

Cassidy, S., & Ballantine, J. (2007). Version control for RDF triple stores. In IC-
SOFT 2007, proceedings of the second international conference on software
and data technologies, volume isdm/ehst/dc, barcelona, spain, july 22-25,
2007 (pp. 5–12).

Chen, C. L. P., & Zhang, C. (2014). Data-intensive applications, challenges,
techniques and technologies: A survey on big data. Inf. Sci., 275, 314–347.

Dean, J., & Ghemawat, S. (2008). Mapreduce: simplified data processing on
large clusters. Communications of the ACM, 51(1), 107–113.

de Sompel, H. V., Sanderson, R., Nelson, M. L., Balakireva, L., Shankar, H., &
Ainsworth, S. (2010). An http-based versioning mechanism for linked data.
CoRR.

Fernández, J. D., Martı́nez-Prieto, M. A., Gutiérrez, C., Polleres, A., & Arias, M.
(2013). Binary RDF representation for publication and exchange (HDT). J.
Web Sem., 19, 22–41.

Fernández, J. D., Polleres, A., & Umbrich, J. (2015). Towards efficient archiv-

References 61

ing of dynamic linked open data. In Proceedings of the first DIACHRON
workshop on managing the evolution and preservation of the data web co-
located with 12th european semantic web conference (ESWC 2015), por-
torož, slovenia, may 31, 2015. (pp. 34–49).

Fernández, J. D., Umbrich, J., & Polleres, A. (2015). Bear: Benchmarking the
efficiency of rdf archiving (Tech. Rep.). Department fr Informationsverar-
beitung und Prozessmanagement, WU Vienna University of Economics and
Business.

Fernández, J. D., Umbrich, J., Polleres, A., & Knuth, M. (2016). Evaluating
query and storage strategies for rdf archives. In Proceedings of the 12th
international conference on semantic systems (pp. 41–48). New York, NY,
USA: ACM.

Fernández, J. D., Umbrich, J., Polleres, A., & Knuth, M. (2017). Evaluating query
and storage strategies for rdf archives. Semantic web journal IOS Press.

Graube, M., Hensel, S., & Urbas, L. (2014). R43ples: Revisions for triples -
an approach for version control in the semantic web. In Proceedings of
the 1st workshop on linked data quality co-located with 10th international
conference on semantic systems, ldq@semantics 2014, leipzig, germany,
september 2nd, 2014.

Gutierrez, C., Hurtado, C. A., & Vaisman, A. A. (2007). Introducing time into
RDF. IEEE Trans. Knowl. Data Eng., 19(2), 207–218.

Huang, J., Abadi, D. J., & Ren, K. (2011). Scalable SPARQL querying of large
RDF graphs. PVLDB, 4(11), 1123–1134.

IM, D.-H., LEE, S.-W., & KIM, H.-J. (2012). A version management framework
for rdf triple stores. International Journal of Software Engineering and
Knowledge Engineering, 22(01), 85-106.

Meimaris, M., & Papastefanatos, G. (2016). The evogen benchmark suite for
evolving rdf data. In Mepdaw/ldq@eswc.

Meimaris, M., Papastefanatos, G., Pateritsas, C., Galani, T., & Stavrakas, Y.
(2014). Towards a framework for managing evolving information resources
on the data web. In Proceedings of the 1st international workshop on
dataset profiling & federated search for linked data co-located with the 11th
extended semantic web conference, profiles@eswc 2014, anissaras, crete,
greece, may 26, 2014.

Memishi, B., Ibrahim, S., Pérez, M. S., & Antoniu, G. (2016). Fault tolerance
in mapreduce: A survey. In Resource management for big data platforms
- algorithms, modelling, and high-performance computing techniques (pp.
205–240).

References 62

Meng, X., Bradley, J. K., Yavuz, B., Sparks, E. R., Venkataraman, S., Liu, D., . . .
Talwalkar, A. (2016). Mllib: Machine learning in apache spark. Journal of
Machine Learning Research, 17, 34:1–34:7.

Naacke, H., Curé, O., & Amann, B. (2016). SPARQL query processing with
apache spark. CoRR, abs/1604.08903.

Neumann, T., & Weikum, G. (2010). The RDF-3X engine for scalable manage-
ment of RDF data. VLDB J., 19(1), 91–113.

Odersky, M., Altherr, P., Cremet, V., Emir, B., Micheloud, S., Mihaylov, N., . . .
Zenger, M. (2004). The scala language specification.

Papakonstantinou, V., Flouris, G., Fundulaki, I., Stefanidis, K., & Roussakis, G.
(2016). Versioning for linked data: Archiving systems and benchmarks. In
Proceedings of the workshop on benchmarking linked data (BLINK 2016)
co-located with the 15th international semantic web conference (iswc),
kobe, japan, october 18, 2016.

Papakonstantinou, V., Flouris, G., Fundulaki, I., Stefanidis, K., & Roussakis,
Y. (2017). Spbv: Benchmarking linked data archiving systems. In Joint
proceedings of BLINK2017: 2nd international workshop on benchmarking
linked data and nliwod3: Natural language interfaces for the web of data
co-located with 16th international semantic web conference (ISWC 2017),
vienna, austria, october 21st - to - 22nd, 2017.

Sande, M. V., Colpaert, P., Verborgh, R., Coppens, S., Mannens, E., & de Walle,
R. V. (2013). R&wbase: git for triples. In Proceedings of the WWW2013
workshop on linked data on the web, rio de janeiro, brazil, 14 may, 2013.

Schätzle, A., Przyjaciel-Zablocki, M., Berberich, T., & Lausen, G. (2015). S2X:
graph-parallel querying of RDF with graphx. In Biomedical data manage-
ment and graph online querying - VLDB 2015 workshops, big-o(q) and
dmah, waikoloa, hi, usa, august 31 - september 4, 2015, revised selected
papers (pp. 155–168).

Schätzle, A., Przyjaciel-Zablocki, M., Skilevic, S., & Lausen, G. (2016). S2RDF:
RDF querying with SPARQL on spark. PVLDB, 9(10), 804–815.

Spahiu, I. B. (2017). Profiling linked data (Unpublished doctoral dissertation).
BICOCCA. (unpublished thesis)

Stefanidis, K., Chrysakis, I., & Flouris, G. (2014). On designing archiving poli-
cies for evolving rdf datasets on the web. In E. Yu, G. Dobbie, M. Jarke,
& S. Purao (Eds.), Conceptual modeling: 33rd international conference,
er 2014, atlanta, ga, usa, october 27-29, 2014. proceedings (pp. 43–56).
Cham: Springer International Publishing.

Tappolet, J., & Bernstein, A. (2009). Applied temporal RDF: efficient temporal

References 63

querying of RDF data with SPARQL. In The semantic web: Research and
applications, 6th european semantic web conference, ESWC 2009, herak-
lion, crete, greece, may 31-june 4, 2009, proceedings (pp. 308–322).

Troullinou, G., Roussakis, G., Kondylakis, H., Stefanidis, K., & Flouris, G.
(2016). Understanding ontology evolution beyond deltas. In Proceedings
of the workshops of the EDBT/ICDT 2016 joint conference, EDBT/ICDT
workshops 2016, bordeaux, france, march 15, 2016.

Udrea, O., Recupero, D. R., & Subrahmanian, V. S. (2010). Annotated RDF.
ACM Trans. Comput. Log., 11(2), 10:1–10:41.

Völkel, M., & Groza, T. (2006, October). SemVersion: An RDF-based Ontol-
ogy Versioning System. In M. B. Nunes (Ed.), Proceedings of iadis inter-
national conference on www/internet (iadis 2006) (p. 195-202). Murcia,
Spain.

Wauer, M., Both, A., Schwinger, S., Nettling, M., & Erling, O. (2015). Inte-
grating custom index extensions into virtuoso RDF store for e-commerce
applications. In Proceedings of the 11th international conference on se-
mantic systems, SEMANTICS 2015, vienna, austria, september 15-17, 2015
(pp. 65–72).

Zablith, F., Antoniou, G., d’Aquin, M., Flouris, G., Motta, H. K. E., Plexousakis,
D., & Sabou, M. (2015). Ontology evolution: a process-centric survey.
Knowledge Eng. Review, 30(1), 45–75.

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly, M., . . . Stoica,
I. (2012). Resilient distributed datasets: A fault-tolerant abstraction for in-
memory cluster computing. In Proceedings of the 9th USENIX symposium
on networked systems design and implementation, NSDI 2012, san jose, ca,
usa, april 25-27, 2012 (pp. 15–28).

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., & Stoica, I. (2010).
Spark: Cluster computing with working sets. In 2nd USENIX workshop on
hot topics in cloud computing, hotcloud’10, boston, ma, usa, june 22, 2010.

Zaharia, M., Xin, R. S., Wendell, P., Das, T., Armbrust, M., Dave, A.,
. . . Stoica, I. (2016a). Apache spark: a unified engine for big
data processing. Commun. ACM, 59(11), 56–65. Retrieved from
http://doi.acm.org/10.1145/2934664 doi: 10.1145/2934664

Zaharia, M., Xin, R. S., Wendell, P., Das, T., Armbrust, M., Dave, A., . . . Sto-
ica, I. (2016b). Apache spark: a unified engine for big data processing.
Communications of the ACM, 59(11), 56–65.

Zimmermann, A., Lopes, N., Polleres, A., & Straccia, U. (2012). A general frame-
work for representing, reasoning and querying with annotated semantic web

References 64

data. J. Web Sem., 11, 72–95.

