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Abstract. There are three types of Web services matchmakers: logic-
based, non logic-based, and hybrid. Logic-based matchmakers employ
the semantics of the Web services. Non-logic based matchmakers em-
ploy other approaches such as syntactic and structural matching. Hybrid
matchmakers combine both approaches. This paper presents and com-
pares two algorithms for computing a semantic logic-based similarity
measure in the perspective of Web service matching. The first algorithm
offers an efficient solution, while the second algorithm proposes a more
accurate result. Both algorithms are evaluated using the SME2 tool. Per-
formance evaluation shows that efficient algorithm reduces substantially
the computing time while the accurate algorithm ameliorates consider-
ably the precision of the matching process.

Keywords: Web service, Matchmaking, Similarity Measure, Degree of
Match, Performance.

1 Introduction

Web service matchmaking consists in the computation of the similarity between
two Web services. It is an important task in Web service discovery and Web ser-
vice composition. The matchmaking process is generally based on the Web ser-
vice description; several standards define this description such as WSDL, OWL-
S, SAWSDL, the two later include semantics. Many matchmakers that support
Web semantics have been proposed in the literature, including [1][3][4][7][9][10][12].
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Three types of Web services matchmakers can be distinguished [2][11][12]: (i)
logic-based matchmakers that employ the semantics of the Web services and set
logic-rules and constraints in order to perform the matching; (ii) non-logic based
matchmakers that rely on syntactic and structural matching techniques; and (iii)
hybrid matchmakers that combine both of the above mentioned matching ap-
proaches. Logic-based techniques did not receive much attention and the authors
in [9] qualify them as imprecise. However, if the logic-based techniques is con-
sidered as a component of a hybrid matchmaker, improving their performances
would improve the overall performance of the matchmaker.

To the best knowledge of the authors, the first logic based matchmaker has
been proposed in [10]. The authors in [1] improve [10]’s proposal by using bipar-
tite graphs. In this paper, two logic-based algorithms for computing the similarity
measure between two Web services are proposed. These algorithms can be seen
as an extension of the one proposed in [10]. Both algorithms have been evalu-
ated using the SME2, which is an open source tool for testing different semantic
matchmakers. The first algorithm slightly affects the precision of [1]’s algorithm
but reduces substantially its computing time. The second algorithm enriches the
semantic distance values used in [1] and ameliorates considerably its precision.

The rest of this paper is organized as follows. Section 2 introduces basic
definitions and shows how the similarity measure is computed. Sections 3 and
4 present the efficient and accurate algorithms, respectively. Section 5 studies
the computational complexity of the algorithms and Section 6 evaluates and
compares their performances. Section 7 ends the paper.

2 Similarity Measure

2.1 Basic Definitions

A semantic match between two entities frequently involves a similarity measure.
The similarity measure quantifies the semantic distance between the two entities
participating in the match. A similarity measure is defined as follows.

Definition 1 (Similarity Measure). The similarity measure, µ, of two ser-
vice attributes is a mapping that measures the semantic distance between the
conceptual annotations associated with the service attributes. Mathematically,
µ : A × A → V , where A is the set of all possible attributes and V the set of
possible semantic distance measures.

There are different possible definition of set V . In [5], for instance, the map-
ping between two conceptual annotations may take one of the following values:
Exact, Plugin, Subsumption, Container, Part-of and Disjoint.

A preferential total order may now be established on the above mentioned
similarity maps.

Definition 2 (Similarity Measure Preference). Let V be the set of all possi-
ble semantic distance values such that V = {v1, v2, · · · , vn}. Preference amongst
the similarity measures is governed by the following strict order: v1 ≻ v2 ≻ · · · ≻
vn, where a ≻ b means that a is preferred over b.
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Definition 3 (Degree of Match). The degree of match is a function that de-
fines a semantic distance value between two conceptual annotations. Mathemat-
ically, δ : CA1 × CA2 → V , where CA1 denotes the first conceptual annotation
and CA2 denotes the second conceptual annotation and V is the set of all possible
semantic distance values.

This generic definition of similarity measure extends the one proposed by [5].
Other matchmaking frameworks (e.g. [1][10][13]) utilize an idea similar to µ, but
label it differently. The main difference between the above-cited works concerns
the way the degree of match is computed. In Sections 3 and 4, two algorithms
for computing the similarity measure are provided. These algorithms improve
the one proposed by [1], which is presented in the rest of this section.

2.2 Computing the Similarity Measure

The computing of the similarity measure over two attributes is modeled by [1]
as a bipartite graph matching. Let first introduce some concepts.

Definition 4 (Bipartite Graph). A graph G = (V0 + V1, E) with disjoint
vertex sets V0 and V1 and edge set E is called bipartite if every edge connects a
vertex of V0 with a vertex of V1 and there are no edge in E with both endpoints
are in V0 or in V1.

Definition 5 (Matching in a Bipartite Graph). Let G = (V,E) be a bipar-
tite graph. A matching M of G is a subgraph G′ = (V,E′), E′ ⊆ E, such that
no two edges e1, e2 ∈ E′ share the same vertex. A vertex v is matched if it is
incident to an edge in the matching M .

Let SR be a service request and SA be a service advertisement. The matching
between SR.Ai and SA.Aj (i.e. µ(SR.Ai, S

A.Aj)) is computed as follows:

1. Construction of the bipartite graph. Let CA0 and CA1 be the sets of concepts
corresponding to the attributes SR.Ai and SA.Aj , respectively. These two
sets are the vertex sets of the bipartite graph G. In other words, G = (V0 +
V1, E) where V0 = CA0 and V1 = CA1. Considering two concepts a ∈ V0 and
b ∈ V1. An edge between a and b is valued with the degree of match between
a and b, i.e., δ(a, b). Then, a numerical weight is assigned to every edge in
the bipartite graph as given in Table 1. These weights verify the following
constraints:

w1 ≤ w2 ≤ w3 ≤ w4. (1)

2. Selection of the optimal matching. A matching is selected only if it fulfills an
injective mapping between V0 and V1. Figure 1 presents two matchings. The
first one respects the injective mapping between V0 and V1 while the second
does not. A bipartite graph G may contain several possible matchings. In
this case, the identification of the optimal matching is required. According to
[1], the optimal matching is the one that minimizes max(wk) with max(wk)
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Table 1. Weighting system

Degree of match Weight of edge
Exact w1

Plugin w2

Subsume w3

Fail w4

Fig. 1. Matching examples

is the maximum weighted edge in the matching. The final returned degree
corresponds to the label of the edge that maximizes max(wi) in the obtained
matching.

To select the optimal matching, the authors in [1] propose the use of the
Hungarian algorithm. However, the application of Hungarian algorithm using
the weighing system given in Table 1 is not possible. This is because the Hun-
garian algorithm minimizes the sum of weights while the optimal matching is the
one that minimizes the maximum weight. The authors in [1] proved that a mod-
ification in weights as in Table 2 permits the Hungarian algorithm to identify
correctly the optimal matching.

Table 2. Improved Weighting System

Degree of match Weight of edge
Exact w1 = 1
Plugin w2 = (w1 ∗ |V0|) + 1
Subsume w3 = (w2 ∗ |V1|) + 1
Fail w4 = w3 ∗ 100

The computing of the similarity measure µ(·, ·) as described above is for-
malized in Algorithm 1. The function ComputeWeights applies the weight
changes as described in Table 2. The function HungarianAlg implements the
Hungarian Algorithm. The w(a, b) in Algorithm 1 is the weight associated to
edge (a, b).

The degree of match δ(·, ·) between two conceptual annotations is estab-
lished according to Algorithm 2 where: ≡: Equivalence relationship; A1: Direct
parent/child relationship; A: Indirect parent/child relationship; and @: Direct
or indirect child/parent relationship.
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The optimality criterion used in [1] is designed to minimize the false positives
and the false negatives. In fact, minimizing the maximal weight would minimize
the ‘Fail’ labeled edges. However, the choice of max(wi) as a final return value
is restrictive and the risk of false negatives in the final result is higher. To avoid
this problem, the consideration of both max(wi) and min(wi) as pertinent values
in the matching is proposed.

Algorithm 1: SimilarityMeasure as defined in [1]

Input : SR.Ai, // attribute Ai in requested service.

SA.Aj , // attribute Aj in advertised service.

Output: µ(SR.Ai, S
A.Aj)// similarity measure between SR.Ai and SA.Aj .

1 Graph G← EmptyGraph(V0 + V1, E);
2 V0 ← concepts of attribute Ai in requested service;
3 V1 ← concepts of attribute Aj in advertised service;
4 (w1, w2, w3, w4)←ComputeWeights();
5 for (each a ∈ V0) do
6 for (each b ∈ V1) do
7 SemanticDistance← δ(a, b);
8 if (SemanticDistance = Exact) then
9 w(a, b)← w1

10 else
11 if (SemanticDistance = Plugin) then
12 w(a, b)← w2

13 else
14 if (SemanticDistance = Subsume) then
15 w(a, b)← w3

16 else
17 w(a, b)← w4

18 M ← HungarianAlg(G);

19 Let (a′, b′) denotes the maximal weighted edge in M ;

20 FinalSemanticDistance← δ(a′, b′);
21 return FinalSemanticDistance;

Algorithm 2: Degree of Match δ(·, ·) as defined in [1]

Input : CAa, // first concept.
CAb, // second concept.

Output: degree of match
1 if (CAa ≡ CAb) then
2 return Exact;
3 else if (CAa A1 CAb) then
4 return Plugin;
5 else if (CAa A CAb) then
6 return Plugin;
7 else if (CAa @ CAb) then
8 return Subsume;
9 else

10 return Fail;
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In the two next sections, two different algorithms for the computing the
similarity measure are introduced. These algorithms are based on [1]’s approach.
The main difference concerns the computation of the degree of match δ(·, ·).

3 Efficient Computation of the Similarity Measure

The semantic distance values are defined similarly to [1] (see Table 1). The im-
provement concerns the degree of match which is now computed as in Algorithm
3 where: ≡: Equivalence relationship; @1: Direct child/parent relationship; and
A1: Direct parent/child relationship.

In this version of the algorithm, only direct related concepts are considered for
Plugin and Subsume semantic distance values. This change affects the precision
of the algorithm since it uses a small set of possible concepts. However, it reduces
considerably the computing time. In fact, there is no need to use inference:
only facts are parsed in the related ontology, which reduces the complexity of
Algorithm 3 (as discussed in Section 5). This will necessarily improves the query
response time. The proposed algorithm provides a balance between response
time and precision, which is valuable in critical situations.

Algorithm 3: Degree of Match δ(·, ·) for an efficient computation of
µ(·, ·)

Input : CAR, // first concept.
CAA, // second concept.

Output: degree of match
1 if (CAR ≡ CAA) then
2 return Exact;
3 else if (CAR @1 CAA) then
4 return Plugin ;
5 else if (CASR A1 CAA) then
6 return Subsumes;
7 else
8 return Fail ;

The computation of the similarity measure is the same as in [1] (see Algorithm
1) but the interpretation of the semantic distances is as given in the beginning
of this section.

4 Accurate Computation of the Similarity Measure

In this case, six semantic distance values are defined as given in Table 3. The basic
idea of this second improvement is that the precision of the algorithm increases
with the number of granular values. Then, an extended weighting system is define
as in Table 4. These weights verify the following constraints:

w1 ≤ w2 ≤ w3 ≤ w4 ≤ w5 ≤ w6 (2)
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Table 3. Elements of the semantic distance values set V

V Semantic distance value
v1 Exact
v2 Plugin
v3 Subsume
v4 Extended-Plugin
v5 Extended-Subsume
v6 Fail

Table 4. Extended weighting system

Degree of match Weight of edge
Exact w1

Plugin w2

Subsume w3

Extended-Plugin w4

Extended-Subsume w5

Fail w6

In this version of the similarity measure, the improvement is also made over
the computing of degree of match δ(·, ·), which is now computed according to
Algorithm 4 where: ≡: Equivalence relationship (it does not need inference);
@1: Direct child/parent relationship; A1: Direct parent/child relationship; @:
Indirect child/parent relationship; and A: Indirect parent/child relationship.

Algorithm 4: Degree of match δ(·, ·) for the accurate computation of
µ(·, ·)

Input : CAR, // first concept.
CAA, // second concept.

Output: degree of match//
1 if (CAR ≡ CAA) then
2 return Exact ;
3 else if (CAR @1 CAA) then
4 return Plugin ;
5 else if (CAR A1 CAA) then
6 return Subsume ;
7 else if (CAR @ CAA) then
8 return Extended-Plugin ;
9 else if (CAR A CAA) then

10 return Extended-Subsume ;
11 else
12 return Fail;

In this algorithm, the consideration of indirect concepts is performed for both
Extended-Plugin and Extended-Subsume semantic distance values. Following
Definition (2), the following preference order holds:

Exact≻Plugin≻Subsume≻Extended-plug-in≻Extended-subsume≻Fail.

Direct relations (i.e. Plugin and Subsume) are preferred to indirect relations (i.e.
Extended-Plugin and Extended-Subsume). To apply the Hungarian Algorithm,
the weights are modified as in Table 5.
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Table 5. Improved weighting system

Degree of match Weight of edge
Exact w1 = 1
Plugin w2 = (w1 ∗ |V0|) + 1
Subsume w3 = (w2 ∗ |V1|) + 1
Extended-Plugin w4 = (w3 ∗ |V1|) + 1
Extended-Subsume w5 = (w4 ∗ |V1|) + 1
Fail w6 = w5 ∗ 100

The computation of the similarity measure is given in Algorithm 5. This al-
gorithm extends the one proposed by [1] (see Algorithm 1). The function Com-
puteWeights applies the weight changes as described in Table 5. The function
HungarianAlg implements the Hungarian algorithm. The w(a, b) in Algorithm
5 is the weight associated to edge (a, b).

Algorithm 5: SimilarityMeasure

Input : SR.Ai, // attribute Ai in requested service.

SA.Aj , // attribute Aj in advertised service.

Output: µ(SR.Ai, S
A.Aj)// similarity measure between SR.Ai and SA.Aj .

1 Graph G← EmptyGraph(V0 + V1, E);
2 V0 ← concepts of attribute Ai in requested service;
3 V1 ← concepts of attribute Aj in advertised service;
4 (w1, w2, w3, w4, w5, w6)←ComputeWeights() ();
5 for (each a ∈ V0) do
6 for (each b ∈ V1) do
7 SemanticDistance←δ(a,b);
8 if (SemanticDistance = Exact) then
9 w(a, b)← w1

10 else
11 if (SemanticDistance = Plugin) then
12 w(a, b)← w2

13 else
14 if (SemanticDistance = Subsume) then
15 w(a, b)← w3

16 else
17 if (SemanticDistance = Extended-Plugin) then
18 w(a, b)← w4

19 else
20 if (SemanticDistance = Extended-Subsume) then
21 w(a, b)← w5

22 else
23 w(a, b)← w6

24 M ←HungarianAlg (G);

25 Let (a′, b′) denotes the maximal weighted edge in M ;
26 FinalSemanticDistance ← δ(a’,b’);
27 return FinalSemanticDistance;
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5 Computational Complexity

The most expensive operation in Algorithms 1 and 5 is the computing of the
degree of match. As shown in [5], inferring degree of match by ontological parse of
pieces of information into facts and then utilizing commercial rule-based engines
which use the fast Rete [6] pattern-matching algorithm leads to O(|R||F ||P |)
where |R| is the number of rules, |F | is the number of facts, and |P | is the average
number of patterns in each rule. Accordingly, the complexity of Algorithms 2
and 4 is O(|R||F ||P |). However, the computing the degree of match according
to Algorithm 3 is only O(|F |) since there is not inference.

Let now discuss the algorithmic complexity of [1]’s approach. Let m be an ap-
proximation of the number of concepts for the attributes to be compared. Then:
(i) the computation of weights is an operation of O(1) complexity; (ii) the con-
struction of the graph involves the comparison of every pair of concepts. It takes
then O(m2) time complexity; (iii) the Hungarian Algorithm has a time complex-
ity of O(m3); and (iv) the degree of match in Algorithm 2 is O(|R||F ||P |).

Generally, m is likely to take small values and it can be considered as a con-
stant. The overall time complexity of [1]’s algorithm is than O(1+m2|F ||R||P |+
m3) ≃ O(|F ||R||P |). Based on the above discussion, the complexity of [1]’s al-
gorithm will be O(1 + m2|F | + m3) ≃ O(|F |) when the degree of similarity is
computed as in Algorithm 3. The computation of the similarity measure accord-
ing to Algorithm 5 is the same as [1]’s algorithm, i.e., O(1+m2|F ||R||P |+m3) ≃
O(|F ||R||P |).

6 Evaluation and Comparison

6.1 Performance Analysis

To SME2 [8] tool has been used to evaluate the performance of the algorithms.
The SME2 uses OWLS-TC collections to provide the matchmakers with Web
service descriptions, and to compare their answers to the relevance sets of the
various queries. The SME2 provides several metrics to evaluate the performance
and effectiveness of a Web service matchmaker. The metrics that have been
considered in this paper are: precision and recall, average precision and query
response time. The definition of these metrics are given in [8].

A series of experimentations have been conducted on a Dell Inspiron 15 3735
Laptop with an Intel Core I5 processor (1.6 GHz) and 2 GB of memory. The
test collection used is OWLS-TC4, which consists of 1083 Web service offers
described in OWL-S 1.1 and 42 queries.

Figures 2 and 3 show the Average Precision and Recall/Precision plot of the
accurate and efficient algorithms, respectively. It can be seen that the accurate
algorithm outperforms efficient algorithm with respect to these two metrics. This
is due to the use of logical inference, that obviously enhances the precision of
the accurate algorithm. In Figure 4, however, efficient algorithm is shown to
be remarkably faster than the accurate algorithm. This is due to the inference
process used in accurate algorithm that consumes considerable resources.
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Fig. 2. Average Precision

Fig. 3. Recall/Precision

Fig. 4. Response Time
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6.2 Comparative Study

Table 6 summarizes the main characteristics of the efficient and accurate algo-
rithms and some existing algorithms proposed in [1][5][10]. The following criteria
have been considered in this comparison: (i) the definition of the semantic dis-
tance set V , (ii) the computing of degree of match δ(·, ·), (iii) the modelling
technique of the matching problem, (iv) the level of precision, and (v) the level
of complexity. The description of this table is straightforward.

Table 6. Comparison of similarity measure computing algorithms

Approach Semantic distance Degree of match δ(c1, c2) Modelling Precision Complexity
technique

[5] v1=Exact Exact: c1 ≡ c2 Unspecified High Moderate
v2=Plug-in Plug-in: c1 @ c2
v3=Subsumption Subsumption: c1 A c2
v4=Container Container: c1 ≽ c2
v5=Part-of Part-of: c1 ≼ 5c2
v6=Disjoint Disjoint: c1 disj6 c2

[10] v1=Exact Exact: c1 ⊑1 c2 Greedy Low High
v2=Plugin Plugin: c1 @ c2 Algorithm
v3=Subsume Subsume: c1 A c2
v4=Fail Fail: c1 disj c2

[1] v1=Exact Exact: c1 ≡ c2 Bipartite High Moderate
v2=Plugin Plugin: c1 @ c2 Graph
v3=Subsume Subsume: c1 A c2
v4=Fail Fail: c1 disj c2

Efficient v1=Exact Exact: c1 ≡ c2 Bipartite Moderate Low
Algorithm v2=Plugin Plugin: c1 @1 c2 Graph

v3=Subsume Subsume: c1 A1 c2
v4=Fail Fail: c1 disj c2

Accurate v1=Exact Exact: c1 ≡ c2 Bipartite High Moderate
Algorithm v2=Plugin Plugin: c1 @1 c2 Graph

v3=Subsume Subsume: c1 A1 c2
v4=Extended-Plugin Extended-Plugin: c1 @ c2
v5=Extended-Subsume Extended-Subsume: c1 A c2
v6=Fail Fail: c1 disj c2

7 Conclusion

Web service matchmaking is an important task in Web service discovery and
Web service composition. Early non-logic based matchmakers rely on syntac-
tic and structural matching techniques, which suffer from several shortcomings,
especially the high number of false positives and false negatives. Accordingly,
different logic-based matchmakers have been proposed (e.g., [1][5][9][10][13]) to
overcome these shortcomings. In particular, the authors in [1] propose a bipar-
tite graph-based algorithm that improves considerably the algorithm of [10] by
reducing false positives and false negatives in the final results.

This paper presents and compares two algorithms for computing a seman-
tic logic-based similarity measure in the perspective of Web service matching.
These algorithms improve the computing of the similarity measure proposed in
[1]. Both algorithms have been evaluated using the SME2 tool. The results show
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that the first algorithm slightly affects the precision of [1]’s algorithm but re-
duces substantially its computing time, while the second algorithm enriches the
semantic distance values used in [1] and ameliorates considerably its precision.
In the future, more advanced performance evaluation with large datasets will be
conducted.
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