
École Supérieure de Commerce de Tunis Institut des Hautes Études Commerciales
Université de la Mannouba de Carthage - Université de Carthage

Master Thesis in Computer Science

Parameterized Semantic Matchmaking and Ranking

Framework for Web Service Composition

Fatma Zahra Gmati

Jury
Prof Rim Faiz, president

Institute of Advanced Business Studies, University of Carthage, Tunisia
Dr Ahlem Ben Hassine, reviewer

National School of Computing, University of Manouba, Tunisia

Supervision Team
Dr Nadia Yacoubi-Ayadi

National School of Computing, University of Manouba, Tunisia
Dr Salem Chakhar

Portsmouth Business School, University of Portsmouth, UK

January 2015

This thesis is dedicated to my wonderful parents.
When there was no hope, they were the light that guided me through the darkness.

I am grateful to them, because they believed in my recovery.

I want also to thank my sister for her precious presence.

Acknowledgments

I want to thank Dr Nadia Yacoubi for her encouragements and sage advices. I want
also to thank Dr Salem Chakhar for his tremendous support, immeasurable help and
for the hours we spent discussing the essence of research. I am thankful to Dr Afef
Bahri for her insightful criticism.

Contents

Contents i

List of Figures iv

List of Tables v

Introduction 1
General context . 1
Motivation and objectives . 2
Structure of the document . 3

1 Web Services Matchmaking and Ranking: State of the Art 4
1.1 Introduction . 4
1.2 Web service definition and basic concepts 5

1.2.1 Definition . 5
1.2.2 Web service standards . 5
1.2.3 Web service architecture . 6

1.3 Semantic Web service . 7
1.3.1 Definition . 7
1.3.2 Ontology . 8
1.3.3 Semantic Web standards . 9
1.3.4 Extension of OWL-S . 10

1.4 Web service composition . 11
1.4.1 Web service composition approaches 11
1.4.2 Composition approach . 12

1.5 Web services matchmaking . 13
1.6 Web services ranking . 16
1.7 Discussion . 17

1.7.1 Strict syntactic matching . 18
1.7.2 Capability-based matchmaking 18
1.7.3 Lack of customisation support 18
1.7.4 Lack of accurate ranking of matching Web services 19

1.8 Conclusion . 19

i

2 Web Services Matching 21
2.1 Introduction . 21
2.2 Background . 22

2.2.1 Example scenario . 22
2.2.2 Basic definitions . 22

2.3 Similarity measure . 23
2.3.1 Definitions . 23
2.3.2 Bellur and Kulkarni’s similarity computing algorithm 24

2.3.2.1 Computing the degree of match 24
2.3.2.2 Computing the similarity measure 25

2.3.3 Efficient computation of the similarity measure 27
2.3.4 Accurate computation of the similarity measure 28
2.3.5 Computational complexity . 30

2.4 Matching algorithms . 32
2.4.1 Trivial matching algorithm . 32
2.4.2 Partially parameterized matching algorithm 33
2.4.3 Fully parameterized matching algorithm 35
2.4.4 Computational complexity . 37

2.5 Extension of matching algorithm . 38
2.5.1 Functional attribute-level disjunctive matching 38
2.5.2 Functional attribute-level generic matchmaking 38
2.5.3 Functional service-level matching 40
2.5.4 Computational complexity . 42

2.6 Comparative study . 43
2.6.1 Computing of similarity measure 43
2.6.2 Matching algorithms . 43

2.7 Conclusion . 45

3 Web Services Ranking 46
3.1 Introduction . 46
3.2 Scoring Web services . 47

3.2.1 Score definition . 47
3.2.2 Score computing algorithms . 48
3.2.3 Algorithmic complexity . 50

3.3 Score-based ranking of Web services . 51
3.3.1 Score-based ranking algorithm 51
3.3.2 Algorithmic complexity . 52

3.4 Rule-based ranking of Web services . 52
3.4.1 Ranking rules . 52
3.4.2 Rule-based ranking algorithm . 55
3.4.3 Algorithmic complexity . 56

3.5 Tree-based ranking of Web services . 56
3.5.1 Principle . 57
3.5.2 Tree construction . 57

ii

3.5.2.1 Node splitting functions 58
3.5.2.2 Tree construction algorithm 58

3.5.3 Tree-based ranking algorithm . 61
3.5.4 Algorithmic complexity . 63

3.6 Comparative study . 66
3.7 Conclusion . 66

4 Implementation and Performance Evaluation 68
4.1 Introduction . 68
4.2 System architecture and implementation 69

4.2.1 System design and conceptual architecture 69
4.2.2 Functional architecture . 71
4.2.3 Implementation . 72

4.3 Performance evaluation framework and metrics 72
4.3.1 Evaluation framework . 72
4.3.2 Test collection . 73
4.3.3 Evaluation metrics . 74

4.3.3.1 Precision and Recall . 74
4.3.3.2 Average Precision . 75
4.3.3.3 Query Response Time 75
4.3.3.4 Memory Usage . 75

4.4 Performance evaluation analysis . 75
4.4.1 Comparison of configurations 1 and 2 76
4.4.2 Comparison of configurations 1 and 4 78
4.4.3 Comparison of configurations 5 and 6 78

4.5 Edge criteria order effect on the tree-based ranking 80
4.6 Comparative study . 82

4.6.1 Recall/Precision . 82
4.6.2 Average precision . 83
4.6.3 Query response time . 83
4.6.4 Memory usage . 84

4.7 Conclusion . 85

Conclusion 86
Summary . 86
Future work . 88

A. QoS-aware semantic matchmaking and ranking of Web services . . . 88
B. Multicriteria-based matching and ranking of Web services 88
C. Fuzzy semantic matchmaking and ranking of Web services 88

Bibliography 90

Glossary 98

iii

List of Figures

1.1 Web service architecture . 7
1.2 XML and Semantic Web W3C standards timeline-history 8
1.3 Extended OWL-S upper ontology . 10
1.4 Taxonomy of orchestration models in Web service composition 12
1.5 QoSeBroker architecture . 13

2.1 Matching examples . 26
2.2 Fragment of the vehicle ontology . 30

3.1 Tree structure . 57
3.2 Illustration of tree construction process 61
3.3 Illustration of tree traversal algorithm 63
3.4 Traversal of the tree boundaries after each phase of the tree construction 65

4.1 Conceptual architecture of the PMRF 70
4.2 Functional architecture of the PMRF . 71
4.3 Extract from class Matching . 73
4.4 Ontology example about Health Insurance 74
4.5 Configuration 1 vs Configuration 2: Average precision 76
4.6 Configuration 1 vs Configuration 2: Recall/Precision 77
4.7 Configuration 1 vs Configuration 2: Query response time 77
4.8 Configuration 1 vs Configuration 4: R-Precision 78
4.9 Configuration 1 vs Configuration 4: Recall/Precision 79
4.10 Configuration 5 vs Configuration 6: Average precision 79
4.11 Configuration 5 vs Configuration 6: Query response time 80
4.12 Effect of the criteria order: Average precision 81
4.13 Effect of the criteria order: Recall/precision 81
4.14 Comparative study: Recall/Precision . 82
4.15 Comparative study: Average precision 83
4.16 Comparative study: Query response time 84
4.17 Comparative study: Memory usage . 85

iv

List of Tables

1.1 Web service composition concerns . 11
1.2 Comparison of matchmaking framework 19

2.1 Elements of the semantic distance values set V 24
2.2 Weighting system . 26
2.3 Improved weighting system . 26
2.4 Elements of the semantic distance values set V 28
2.5 Extended weighting system . 29
2.6 Improved weighting system . 30
2.7 An example Attributes List . 34
2.8 An example Criteria Table . 36
2.9 Comparison of similarity measure computing algorithms 43
2.10 Comparison of matching algorithms . 44

3.1 Weights of similarity degrees . 47
3.2 Web services identified by the matching algorithm 48
3.3 Precision of score-based ranking . 52
3.4 Ordinal rank of similarity degrees . 53
3.5 Comparison of ranking approaches . 66

4.1 Description of the evaluated configurations 75
4.2 Order of the criteria considered . 80

v

Introduction

General context

The W3C1 defines a Web service as ‘a software system designed to support interopera-
ble machine-to-machine interaction over a network’ [80]. The Web service architecture
is defined by the W3C in order to determinate a common set of concepts and relation-
ships that allow different implementations working together [18]. The basic Web service
architecture contains three elements: (i) service requester, which is the software system
that requests; (ii) service provider, which is the software system that would process the
request and provides the data; (iii) service registry which contains additional informa-
tion about the service provider. More information about Web service architecture is
given in Section 1.2.

Individual Web services are conceptually limited to relatively simple functionalities
modelled through a collection of simple operations. However, for certain types of ap-
plications, it is necessary to combine a set of individual Web services to obtain more
complex ones, called composite or aggregated Web services. Service composition can
roughly be defined as the process of combining existent Web services in order to obtain
new ones. It is considered as a crucial task since it saves money and human efforts,
especially if the task is entirely automatized. The composition process raises new issues
in line with the evolvement of the Web and other inherent technologies.

Syu et al. [78] categorize Web service composition into three core research concerns
(service classification, planning, and selection) as well as two crosscutting research
concerns (service description and matchmaking), which cut across all core concerns
and widely affecting and involving in them. Syu et al. [78] also identify two types
of matchmaking for Web service composition: matchmaking between service junctions
as well as between services. The aim of the first type of service matchmaking is to
determine whether two services are eligible to be related together or not. Basically,
in this type of matchmaking, a service’s outputs are compared to the inputs of its
successor. In the second type of matchmaking, the purpose is to compare the similarity
between two services, for example, inputs of the first service are compared to the inputs
of the second one. This research project is concerned the matchmaking between Web
services.

1The W3C (World Wide Web Consortium) is the main international standards organization for the
World Wide Web. See: http://www.w3.org/.

1

Motivation and objectives

The matchmaking is a crucial operation in Web service composition. The objective of
matchmaking is to discover and select the most appropriate (i.e., that responds better to
the user request) Web service among the different available candidates. Several match-
making frameworks are now available in the literature, e.g., [4][50][53][62][78][86][82].
Ludwig [53], for instance, proposes two matchmaking approaches: one that is based on
a genetic algorithm, and the other is based on a memetic algorithm to match consumers
with services based on Quality of Service (QoS) attributes. Wang et al. [82] propose
the use of utility function to evaluate each component service based on the definition
in [86] and then map the multi-dimensional QoS composite Web service to the multi-
dimensional multi-choice knapsack. Finally, they propose a fast heuristic algorithm for
solving the problem. However, most of these frameworks present at least one of the
following shortcomings:

1. use of strict syntactic matching, which generally leads to low recall and low pre-
cision of the retrieved services;

2. use of capability-based matchmaking, which is proven [24] to be inadequate in
practice;

3. lack of customisation support;

4. lack of accurate ranking of matching Web services, especially within semantic-
based matching.

These shortcomings are discussed in more detail in the next chapter (see Section
1.7). The objectives of this research project are to propose conceptual and algorithmic
solutions to jointly deal with previous shortcomings. More precisely, the main aims of
this research project are:

1. Refine and improve the matchmaking algorithms proposed in [24][15][16];

2. Propose new algorithms for scoring and ranking Web services;

3. Conceive and develop a prototype supporting the matching and ranking algo-
rithms;

4. Study the complexity, test and evaluate the performance of proposed algorithms.

Several existing frameworks have influenced this research project, especially the pro-
posals of [42][7][64][24] [15][16]. Although that these proposal are based on semantics,
they fail to take into account jointly the shortcomings of Web matchmaking discussed
earlier. Indeed, the proposal of [7][42][73] do not support any customization while those
of [15][16][24] do not propose solutions for ranking Web services. Some proposals in-
cluding [9][34] propose to use semantics to enhance the matchmaking process but most
of them still consider capability attributes only. The proposal of [15][16] lack effective

2

implementation of the proposed matchmaking framework. Indeed, the authors discuss
very generally and very briefly the technical issues. In addition, the authors do not
precise how the similarity degree is computed and how the different matching Web
services are ranked before provided to the user. Finally, there is a lack of effective
evaluation and performance analysis of matching algorithms.

The solutions proposed in this research project permit to overcome the first, third
and fourth shortcomings of semantic matchmaking frameworks. The second short-
coming is not addressed in this research project. However, the QoS-based semantic
matching algorithms proposed in [16]—and which still apply here—can solve this issue.

Structure of the document

This document is structured into four chapters, in addition to this introductive chapter
and the general conclusion. The following is an outline.

Chapter 1. Web service matchmaking and ranking: State of the art This
chapter first introduces the basic concepts on Web services. Then, it discusses the
problem of Web service composition. Next, it reviews existing approaches of Web
service matchmaking and ranking. Finally, the chapter discusses in more details the
shortcomings of existing matchmaking frameworks.

Chapter 2. Web services matchmaking This second chapter first introduces an
improved algorithm for similarity measure computing. Next, it presents a series of
semantic matchmaking algorithms with different levels of customization. Finally, the
chapter compares the proposed algorithms to some existing ones.

Chapter 3. Web services ranking This chapter first presents a technique for
computing Web services scores based on the information provided by the user. Then,
it details three different algorithms for ranking matching Web services: score-based,
rule-based and tree-based. This chapter also studies the computational complexity of
all ranking algorithms and discusses and compares the proposed algorithms to existing
ones.

Chapter 4. Implementation and performance evaluation This chapter first
provides the conceptual and functional architecture of the developed prototype. Then,
it details the developed prototype. Finally, it tests and evaluates the performance the
proposed matching and ranking algorithms and compare their performances to some
existing proposals.

3

Chapter 1

Web Services Matchmaking and
Ranking: State of the Art

The objective of this chapter is to provide the basic concepts of Web
service composition and matchmaking. A special attention will be given
to review the most important semantic-based matchmaking algorithms
that have influenced this research project. The chapter also reviews some
Web services ranking methods and discusses the shortcomings of existing
matchmaking and ranking algorithms.

1.1 Introduction

Web services are reusable software components on the Web which can be discovered,
fetched, and invoked [69]. Several Web services are now used in different applica-
tion domains including e-commerce, marketing, industry, biology, human sciences, etc.
Composing individual Web services to construct a new, more complex, Web services is
a current solution to dealt with complex situations in organizations. Discovering the
most appropriate Web service is a crucial step in Web service composition. An impor-
tant component of discovery process is the matchmaking algorithm itself [7], which is
the core part of Web service discovery process [63].

Traditional Web services are based on strict syntactic matching, which generally
leads to low recall and low precision of the retrieved services [54]. To avoid the short-
comings of these frameworks, different advanced techniques and algorithms have been
used such that genetic algorithmic [53], utility function [82][86], etc. More recently,
the semantic-based matchmaking algorithms have been used (for a survey, see e.g.,
[56][67]). However, most of proposed semantic-based matchmaking algorithms focus
on capability attributes only. Furthermore, they lack the support of customization.
But the most critical point of the Web semantic-based matchmaking algorithms is the
ranking of matching services [71].

The objective of this chapter is to provide the basic concepts of Web service compo-
sition and matchmaking. A special attention will be given to review the most important

4

semantic-based matchmaking algorithms and discuss their shortcomings. The rest of
the chapter is organised as follows. Section 1.2 introduces the basic concepts of Web
services. Section 1.4 deals with Web service composition Section 1.5 reviews semantic-
based matchmaking algorithms. Section 1.6 deals with Web services ranking. Section
1.7 discuses the shortcomings of matchmaking and ranking algorithms. Section 1.8
concludes the chapter.

1.2 Web service definition and basic concepts

1.2.1 Definition

Several definition of a Web service have been proposed in the literature. The UDDI
(Universal Description Discovery and Integration) standard consortium published de-
fines a Web service as follows [22]:

A Web service is a self contained, modular business application that have open
Internet oriented, standard-based interfaces.

According to this definition, a Web service is obviously an autonomous piece of soft-
ware characterized by its modularity. In other words, a Web service is easily pluggable
in more complex applications.

A more specific definition proposed by the W3C is the following [79]:

A Web service is a software application identified by a Uniform Resource Iden-
tifier (URI), whose interfaces and bindings are capable of being defined, de-
scribed, and discovered as eXtensible Markup Language (XML) artifacts. A
Web service supports direct interactions with other software agents using XML-
based messages exchanged via Internet-based protocols.

According to this definition, a Web service is a resource obtainable via the Internet,
identified by a unique identifier called URI. Web services permit the interactions be-
tween different softwares, by providing a machine processable interface in XML format.
This ability enhances the interoperability between applications, making the Web easily
used by machines and freeing humans from monotonous tasks.

1.2.2 Web service standards

Web services use a set of standards and protocols. Many of these standards are being
worked out by the UDDI project. The following descriptions, reproduced from [76],
provide the main standards and protocols used in Web services.

Universal Description, Discovery, and Integration The Universal Description,
Discovery, and Integration (UDDI) is a protocol for describing available Web services
components. This standard allows businesses to register with an Internet directory that
will help them advertise their services, so companies can find one another and conduct

5

transactions over the Web. This registration and lookup task is done using XML and
HTTP(S)-based mechanisms.1

Simple Object Access Protocol The Simple Object Access Protocol (SOAP) is a
protocol for initiating conversations with a UDDI Service. SOAP makes object access
simple by allowing applications to invoke object methods or functions, residing on
remote servers. A SOAP application creates a request block in XML, supplying the
data needed by the remote method as well as the location of the remote object itself.

Web Service Description Language TheWeb Service Description Language (WSDL)
is the proposed standard for how a Web service is described is an XML-based service
IDL (Interface Definition Language) that defines the service interface and its implemen-
tation characteristics. WSDL is referenced by UDDI entries and describes the SOAP
messages that define a particular Web service.

1.2.3 Web service architecture

Figure 1.1 shows a graphical representation of the basic Web service architecture. It
consists of three basic entities:

• Service provider. The service provider creates or simply offers the Web service.
The service provider needs to describe the Web service in a standard format, which
is often XML, and publish it in a central service registry.

• Service registry. The service registry contains additional information about
the service provider, such as address and contact of the providing company, and
technical details about the service.

• Service consumer. The service consumer retrieves the information from the
registry and uses the service description obtained to bind to and invoke the Web
service.

Web service architecture is loosely coupled, service oriented. The WSDL uses the
XML format to describe the methods provided by a Web service, including input and
output parameters, datatypes and the transport protocol, which is typically HTTP,
to be used. The UDDI suggests means to publish details about a service provider,
the services that are stored and the opportunity for service consumers to find service
providers and Web service details. The SOAP is generally used for XML formatted
information exchange among the entities involved in the Web service model.

A Web services architecture then requires three fundamental operations: publish,
find and bind. These operations, which can occur singly or iteratively, are described as
follows [76]:

1The Hypertext Transfer Protocol (HTTP) is an application protocol for distributed, collaborative,
hypermedia information systems. The Hypertext Transfer Protocol Secure (HTTPS) is the result of
simply layering the HTTP on top of the SSL/TLS protocol.

6

Figure 1.1: Web service architecture

• Publish: To to be accessible; a service description needs to be published so that
the service requester can find it. Where it is published can vary depending upon
the requirements of the application.

• Find : In the find operation, the service requester retrieves a service description
directly or queries the service registry for the type of service required. The find
operation can be involved in the two different lifecycle phases for the service
requester: at design time to retrieve the services interface description for pro-
gram development, and at runtime to retrieve the services binding and location
description for invocation.

• Bind : Eventually, a service needs to be invoked. In the bind operation the service
requester invokes or initiates an interaction with the service at runtime using the
binding details in the service description to locate, contact and invoke the service.

These operations are depicted in Figure 1.1 by the keywords ‘publish’, ‘bind’ and
‘find’.

1.3 Semantic Web service

1.3.1 Definition

The first Web service interfaces was described in WSDL. The WDSL is inherently de-
signed to describe the functional aspects (e.g. service type, port to bind to, the type of
parameters, etc.) of a Web service. In addition, the WDSL is not designed to publish
the non-functional aspects because WSDL is not designed to take the ’semantic descrip-
tions’ of the service [76]. To avoid these shortcomings, a common solution consists in
enriching WSDL with semantics support. This permits to enhance the interpretability
since adding semantics to a Web service description makes it understandable by other
machines.

A Web service enhanced with semantics is called a semantic Web service. The
term ‘Semantic Web’ was coined by Tim Berners-Lee for a Web of data that can be
processed by machines (see [10]). The Semantic Web is a collaborative movement led

7

by international standards body the W3C. Figure 1.2 presents the timeline history of
XML and Semantic Web W3C Standards. The W3C defines Semantic Web as follows
[81]:

The Semantic Web provides a common framework that allows data to be shared
and reused across application, enterprise and community boundaries.

Figure 1.2: XML and Semantic Web W3C standards timeline-history
Source: [11].

The current World Wide Web represents information using natural languages. The
information is intended for human readers but not machines. The Semantic Web is ‘an
extension of the current Web in which information is given well-defined meaning, en-
abling computers and people to work in better cooperation’. It is a mesh of information
that can be automatically processed and understood by machines.

1.3.2 Ontology

Ontology represents knowledge about a particular domain. It includes a set of machine-
interpretable definitions of basic concepts in the domain and relations among them. It
consists of a set of axioms which place constraints on sets of individuals (called classes)
and the types of relationships permitted between them. These axioms provide seman-
tics by allowing systems to infer additional information based on the data explicitly
provided.

Ontology defines a common vocabulary to share information in a domain. Indeed,
enabling reuse of domain knowledge was one of the driving forces behind recent surge in
ontology research. Additionally, if we need to build a large ontology, we can integrate
several existing ontologies describing portions of the large domain. Analyzing domain
knowledge is possible once a declarative specification of the terms is available. The
main reason to use ontologies in computing is that they facilitate interoperability and

8

machine reasoning. Indeed, formal analysis of terms is extremely valuable when both
attempting to reuse existing ontologies and extending them.

Onlology requires the use of a formal language to describe the concepts and rela-
tionships in a domain. A common ontology for Web services is the OWL-S (formally
DAML-S) ontology, which aims to facilitate automatic Web service discovery, invoca-
tion and composition. It describes properties an capabilities of Web services but does
not provide details about how to represent other information of Web services (e.g. QoS
descriptions).

1.3.3 Semantic Web standards

Web services need to be described in a high-level and abstract manner. This enables
their automatic discovery and composition of desired functionality. The Semantic Web
involves publishing in languages specifically designed for supporting semantics. The
following are some common standards for Semantic Web services representation.

RDF The Resource Description Framework (RDF) is a basic semantic mark-up lan-
guage for representing information about resources on the Web. It is used in situations
where the information needs to be processed by applications rather than humans. RDF
Schema (RDF-S) is a language for describing RDF vocabulary. It is used to describe
the properties and classes of RDF resources.

OWL The Web Ontology Language (OWL) is a family of knowledge representation
languages or ontology languages for authoring ontologies or knowledge bases. The
languages are characterized by formal semantics and RDF/XML-based serializations
for the Semantic Web. The OWL provides more vocabulary for describing properties
and classes of RDF resources than RDF-S. The OWL adds, among others, relations
between classes (e.g. disjointness), cardinality (e.g. ”exactly one”), equality, richer
typing of properties, characteristics of properties (e.g. symmetry), and enumerated
classes.

OWL-S The OWL-S (Web Ontology Language for Services) is an OWL based se-
mantic markup for Web services. It provides a language to describe the properties and
capabilities of Web services. OWL-S can be used to automate Web service discovery,
execution, composition and interoperation. The OWL-S is required to perform the
following tasks automatically:

• Web service discovery: extract the information from the page in order to find a
required service.

• Web service invocation: OWL-S along with the domain ontology specifies the
invocation methods of a Web service (e.g. necessary inputs, expected outputs).

9

• Web services composition and interoperation: OWL-S provides declarative way
to specify prerequisite and consequences of a service which helps software agents
in composing different Web services.

The OWL-S provides Service Profile, Service Model and Service Grounding to rep-
resent Description, Functionality and Access Mechanism respectively.

1.3.4 Extension of OWL-S

An extended version of the OWL-S has been proposed in [1]. OWL-S specifies an
upper ontology of services that defines the structure of a service description. OWL-S
defines that a service presents a ServiceProfile (what the service does), is described by
a ServiceModel (how it works) and supports a ServiceGrounding (how to access it) (see
Figure 1.3).

Figure 1.3: Extended OWL-S upper ontology
Source: [1].

The enhanced OWL-S defines a ServiceType class hierarchy in addition to the service
hierarchy. The ServiceProfile of an instance points to the corresponding ServicePro-
fileType for mandatory portion common to all instances. It could, however, add its
own precondition and effects. Similarly, it may support additional outputs as well as
inputs, in which case it specifies the default values of additional inputs so that the
compositions done using ServiceProfileType remain valid.

Within the initial OWL-S, the functional requirements of a Web service are ex-
pressed through IOPE (Inputs-Outputs-Preconditions-Effects), which captures the trans-
formation performed by this service. OWL-S can also be used to represent non-
functional requirements through profile attributes, which may contain parameters other
than the functional IOPE. In the extended OWL-S upper ontology, the functional re-
quirements are represented in ServiceProfileType. The ServiceProfile of an instance
inherits these functional requirements from the ServiceProfileType and adds the non-
functional requirements to it.

10

1.4 Web service composition

Syu et al. [78] categorize Web service composition into three core research concerns
(service classification, planning (also called combination), and selection) as well as two
crosscutting research concerns (service description and matchmaking), which cut across
all core concerns and widely affecting and involving in them. Table 1.1 provides a brief
definition of these concerns. The objective of Web service composition is to aggregate
existing elementary services in order to created a new non-existing one. The Web
service composition is an important task in SOA, especially if it is entirely automated.
This because it it saves implementation efforts and time.

Table 1.1: Web service composition concerns
Service Classification assign services into different groups based on some criteria

Service Planning creation of workflows without human influence and efforts

Service Selection selection of an appropriate service for each activity in the
workflow

Service Description description and expression of services

Service Matchmaking identifying services that are compatible with the user spec-
ifications

1.4.1 Web service composition approaches

Different Web service composition approaches have been proposed in the literature.
Most of research investigations on Web service composition were centred on the defi-
nition of the orchestration model [65]. The orchestration model defines the techniques
adopted to construct the workflow. Petrova and Dimov [65] present a taxonomy of Web
service composition approaches, which is summarised in Figure 1.4. They distinguish
the following composition approaches:

• Signature Matching (SM) techniques; e.g. [61].

• Artificial Intelligence (AI) Planning approaches; e.g. [41][5][52] [37].

• Planning as Model Checking (PCM) approaches ; e.g. [85][66].

• π-calculus which is a process algebra using orchestration and choreography lan-
guages; [19] e.g. [68][13].

• Graph Model (GM) based approaches; e.g. [2][17].

• PetriNets model; e.g. [21].

• State chars models.

11

Figure 1.4: Taxonomy of orchestration models in Web service composition

1.4.2 Composition approach

The result of this research project will be integrated in Web service composition sys-
tem QoSeBroker (for QoS-Enhanced Broker) proposed in [14]. The key elements of the
composition approach adopted in QoSeBroker are: the composition graph, potential
executable plans and executable plan. The composition graph is an abstract repre-
sentation of functional requirements provided by the user. It models the invocation
relationships between the individual Web services contained in the composite Web ser-
vice. The set of potential executable plans is the composite service instances which are
obtained by replacing each services type in the composition graph by its instances using
a set of transformation rules. The objective of the transformation operation is to in-
clude the different semantics of the BPEL2 constructors. Among the different potential
executable plans only one called executable plan should be selected and transformed to
a workflow for effective execution.

The composition operation starts by user specification of functional and non-functional
requirements and leads to an executable plan that can be handed off to runtime envi-
ronment for execution. The proposed approach to support the composition operation
contains three phases:

1. Logical composition: First, the functional requirements provided by the user are
used to generate the composition graph.

2. Physical composition: Second, the composition graph is transformed to obtain
the set of potential executable plans.

3. Evaluation and selection: Third, the different potential executable plans are eval-
uated and compared in order to select one executable plan. The latter is then
transformed into a workflow and then deployed, discovered and invoked.

The service composition approach is implemented by a layered system called QoSeBro-
ker (for QoS-enhanced Broker). The architecture of QoSeBroker is given in Figure 1.5.
A detailed description of QoSeBroker is given in [14].

2The BPEL (Business Process Execution Language) is a standard executable language for specifying
actions within business processes with Web services; See [12].

12

Figure 1.5: QoSeBroker architecture
Source: [14].

1.5 Web services matchmaking

The matchmaking can be defined as the process of identifying services that are com-
patible with the user specifications. In other words, given a service repository and a
specification of a requested service, how to find the most pertinent service in response
to the requester needs. The first attempts to resolve this issue have been entirely based
upon the Web service interface description, precisely the WSDL files. The first match-
making frameworks, (e.g. as Jini [4], Konark [50] and Salutation [62]) are based on
strict syntactic matching, which generally leads to low recall and low precision of the
retrieved services [54]. Klusch [39] classifies the matchmakers into three categories,
according to the employed techniques: logic-based, non-logic-based and hybrid tech-
niques. The analysis of all these categories showed that logic-based techniques generate
the lowest precision and recall rate [39]. In the next section, we provide a brief review
of logic-based matchmaking.

To overcame the shortcomings of traditional matchmaking frameworks, several au-
thors proposed to include the semantics in the matchmaking process [69]. The first
semantic matchmaker have been proposed by Paolucci et al [64]. This semantic match-
maker adopts a greedy approach. The idea is to assign a degree of match between
service concepts and then aggregate the results to obtain an overall service match. The
degree of match in [64] is computed according to Algorithm 1.

During the matching process, the request inputs Rin and outputs Rout are matched
to the service inputs Sin and outputs Sout, respectively. A degree of match between

13

each concept is then calculated. A greedy algorithm is used to aggregate the matching
results in order to obtain the overall service matching degree. Finally the services are
ranked according the following order of preference:

Exact 〉 Plug-in 〉 Subsumes 〉 Fail.

Algorithm 1: Degree of Match (as defined by [64])
Input : CR, // first concept.

CA, // second concept.
Output: exact, plug-in, subsumes, fail

1 if (CR ⊑1 CA) then /* direct child/parent or equivalence relation */

2 return exact ;
3 else if (CR ❁ CA) then /* indirect child/parent relation */

4 return plug-in ;
5 else if (CR ❂ CA) then /* direct or indirect parent/child relation */

6 return subsumes ;
7 else
8 return fail ;
9 endif

The first drawback of Paolucci et al. [64] approach is the way the degree of match
is computed. Indeed, calculating a subsumes relation over a large ontology can be
time consuming due to the inference process. The second drawback, as noticed by [7],
concerns the problem of false positives and false negatives in the final results. A false
negative is a relevant service tagged as irrelevant, and a false positive is an irrelevant
service tagged as relevant. In other words, the algorithm of Paolucci et al. [64] generates
a low precision and recall rate.

Several semantic matchmakers inspired by [64] are now available in the literature,
see e.g., [7][9][24][29][34][42][51][73][77]. Bellur et al. [7] propose an algorithm that
improves considerably the algorithm of [64]. Bellur et al. define four degree of match
(Exact, Plug-in, Subsumes and fail as default). Then, the Rin and Rout are matched
to Sin and Sout by constructing a bipartite graph where the vertices correspond to
concepts associated with the attribute. The vertices in the left side of the bipartite
graph correspond to advertised services while those in the right side correspond to the
requested service. The edges correspond to the semantic relationships between concepts
in left and right sides of the graph. Then, they assign weights to each edge (Exact: w1,
Plug-in: w2, Subsumes: w3, Fail w4 with w4 > w3 > w2 > w1). Finally, they apply
the Hungarian algorithm [48] to identify the complete matching that minimizes the
maximum weight in the graph. The final returned degree is the one corresponding to the
maximum weight in the graph. Then, the selected assignment is the one representing
a strict injective mapping, such that the maximal weight is minimized. To obtain the
optimal assignment.

The computation of the degree of match as detailed in [64], consumes time and
memory. However, the use of a bipartite graph reduces considerably false positives and
false negatives in the final results.

The SPARQLent [73] is a semantic matchmaker designed to help agents in the dis-
covery of OWL-S services. The agent’s goals and the advertised services’ preconditions,

14

postconditions, inputs and outputs are expressed by means of SPARQL. Then, using
a shared knowledge base, the RDF graphs (corresponding to SPARQL queries) are
matched and the degree of satisfiability is calculated. Sbodio et al. [73] propose also an
approximate matchmaking version of SPARQLent where the services IOPE attributes
are divided into basic graph patterns and optional graph patterns. The constraints in
the optional graph patterns are then relaxed in order to satisfy the agent goal. Services
are then ranked according to the number of satisfied constraints in the optional graphs.

The first disadvantage of SPARQLent is the use of SPARQL. In fact, querying a
large Knowledge base can be time consuming since SPARQLent uses OWL-DL en-
tailment regime and supports inference at all levels [72]. The second drawback is the
ranking process. Indeed some services do not contain preconditions and effects; thus
they are disadvantaged during the matchmaking leading to bias in the ranking results.

The iSeM [43] [42] is an hybrid matchmaker offering different filter matchings: logic-
based, approximate reasoning based on logical concept abduction for matching Inputs
and Outputs. iSeM uses SVM classifier to aggregate the results of several matching
modules, each adopting a different approach. These approaches are based on logic,
text similarity, ontology structure and approximate logic. The iSeM also filters services
using a Precondition/ Effect matching plugin. In what follow, we only present the
logic-based module since we perform only logic-based matching in our framework.

The iSeM-logic-based-module generates a degree of similarity between the request
and a service MatchIO(R,S) using the following approach. First, the request inputs
(outputs) Rin (Rout) are matched to the service inputs (outputs) Sin (Sout). This
assignment is obtained using a bipartite graph. It is defined as BPGX(C,D) with C

the request concepts, D the service concepts and X = {≡,⊒1,⊑1,❂,❁} where:

• ≡: equivalence relation;

• ⊒1: direct parent child relation;

• ⊑1: direct child parent relation;

• ❂: parent child relation;

• ❁: child parent relation.

The weight of an edge expresses whether the X relation is fulfilled or not. In detail,
for c ∈ C and d ∈ D, if cXd is true then weight(c, d) = 1 otherwise weight(c, d) = 0.
Next, the degrees are calculated according to the following definitions:

15

MatchIO(R,S) ∈ {Exact, Plug-in, Subsumes, Subsumed-by, LFail} with

Exact: BPG≡(Sin, Rin) 6= ∅
∧ ∀(IS , IR) ∈ BPG≡(Sin, Rin) : IS ≡ IR
∧ BPG≡(Rout, Sout) 6= ∅
∧ ∀(OR, OS) ∈ BPG≡(Rout, Sout) : OR ≡ OS

Plug-in: BPG⊒(Sin, Rin) 6= ∅
∧ ∀(IS , IR) ∈ BPG⊒(Sin, Rin) : IS ⊒ IR
∧ BPG⊒1(Rout, Sout) 6= ∅
∧ ∀(OS , OR) ∈ BPG⊒1(Rout, Sout) : OR ⊒1 OS

Subsumes: BPG⊒(Sin, Rin) 6= ∅
∧ ∀(IS , IR) ∈ BPG⊒(Sin, Rin) : IS ⊒ IR
∧ BPG⊒(Rout, Sout) 6= ∅
∧ ∀(OS , OR) ∈ BPG⊒(Rout, Sout) : OR ⊒ OS

Subsumed-by: BPG⊒(Sin, Rin) 6= ∅
∧ ∀(IS , IR) ∈ BPG⊒(Sin, Rin) : IS ⊒ IR
∧ BPG⊑1(Rout, Sout) 6= ∅
∧ ∀(OS , OR) ∈ BPG⊑1(Rout, Sout) : OR ⊑1 OS

LFail None of the above logical filters is respected

Finally, the degrees are ranked according to this order of preference:

Exact 〉 Plug-in 〉 Subsumes 〉 Subsumed-by 〉 LFail.

The main weakness of iSeM-logic-based-module is its low-precision rate. As indi-
cated in [42], it generates 45% average precision rate according to tests performed over
OWLS-TC test collections. In fact, this low-precision rate is due to the coarse-grained
produced degrees. Indeed, there is only five degrees as stated above.

An important shortcoming of SPARQLent and ISEM matchmakers is the lack of
accurate ranking. Indeed, the ranking of matching Web services is crucial when the
number of Web services that match the user request is high. It allows the user to
choose among the different alternatives without restricting him to few choices. In fact,
most logic-based approaches cited in literature [7][64] preform basic classification of
Web services leading to coarse grained ranking results.

1.6 Web services ranking

Provide the user with an ordered list of Web services is important for two main reasons.
First, in an automated Web service discovery, the top ranked Web service can be
automatically chosen. Second, many Web services may match the user query, the

16

ranking of these services helps the user to identify the most suitable Web service to
deploy.

In what follows, we discuss the main characteristics of the ranking approaches cited
in literature. These approaches can be classified into three groups, along with the nature
of the information that they use: (i) ranking approaches based on the Web service
description information; (ii) ranking approaches based on the information external to
the Web service description; and (iii) ranking approaches based on the user preferences.

Ranking approaches based on the Web service description The ranking can
relay only on the information available in the web service description, which generally
provides information about the service capability (IOPE attributes), the service quality
(QoS attributes) and/or the service property (additional information). This type of
ranking is far more practical than ranking on the basis of external information, since
all needed data is available.

Among the approaches adopting this strategy, we cite [58] where the authors com-
bine the QoS and the fuzzy logic and propose a ranking matrix. However, this approach
is centered only on the QoS and discards the other Web service attributes. We also
mention the work of [75] where the authors propose a ranking method that computes
a dominance score between services. The calculation of these scores requires a pairwise
comparison that increases the time complexity of the ranking algorithms.

Ranking based on external information Several ranking approaches use both
the Web service descriptions and also other external information to the Web service
description (see, e.g., [47][55][57]). For example, the authors in [74] extract the context
of Web services and employs it as an additional information during the ranking. In
[44], the authors rank Web services on the basis of the user past behavior. However,
the use of external information can only be performed in some situations where the
data is available, which is not always the case in practice.

Ranking approaches based on the user preference In this type of ranking, the
ranking algorithm uses the user preferences. In [6], for instance, the authors use some
constraints specified by the user. A priority is then assigned to each constraint or group
of constraints. The algorithm proposed by [6] uses then a ranking Tree to perform the
matching and ranking procedure.

1.7 Discussion

Several matchmaking frameworks have been proposed in the literature. However, most
of these frameworks present at least one of the following shortcomings: (i) use of strict
syntactic matching; (ii) use of capability-based matchmaking; (iii) lack of customisation
support; and (iv) lack of accurate ranking of matching Web services. I what follows,
we discuss each of these shortcomings. Table 1.2 summarizes this discussion.

17

1.7.1 Strict syntactic matching

The first and traditional matchmaking frameworks, such as Jini [4], Konark [50] and
Salutation [62], are based on strict syntactic matching. Such syntactic matching ap-
proaches only performs service discovery and service matching based on particular
interface or keyword queries from the user, which generally leads to low recall and low
precision of the retrieved services [54].

Some advanced techniques and algorithms (e.g., genetic algorithmic as in [53], utility
function as in [82][86]) have been used to overcome the problem of syntactic matching.

In order to overcome the limitation of strict syntactic matching, many authors
propose to include the concept of semantics as in [7][9][29][34][42][51][64][73][77]. The
use of ontology eliminates the limitations caused by syntactic difference between terms
since matching is now possible on the basis of concepts of ontologies used to describe
input and output terms [8].

1.7.2 Capability-based matchmaking

Most of existing matchmaking frameworks such as [51][64][77][9][34] utilize a strict
capability-based matchmaking, which is proven [24] to be inadequate in practice. Some
recent proposals including [9][34] propose to use semantics to enhance the matchmaking
process but most of them still consider capability attributes only.

Chakhar [15] distinguish three types of service attributes (i) capability attributes
that directly relate to working of the service, (ii) quality attributes related to the QoS
and property attributes including all attributes other than those included in service
capability or service quality.

Chakhar et al. [16] extend the work of [24][15] and propose different matchmaking
algorithms devoted to different types of attributes (capability, property and QoS). For
instance, non-functional QoS matching categorize Web services into different ordered
QoS classes. The user should then select one Web service from the highest QoS class
for implementation.

1.7.3 Lack of customisation support

An important shortcoming of most of existing Web service matchmaking frameworks is
the lack of customisation support. To deal with this shortcoming, several authors allow
the user to specify some parameters. Doshi et al. [24], for instance, present a param-
eterized semantic matchmaking framework that exhibits a customizable matchmaking
behavior. One important shortcoming of [24] is that the sufficiency condition defined
by the authors is very strict since it requires that all the specified conditions hold at
the same time. This seems to be very restrictive in practice, especially for attributes
related to the QoS.

Recently, [16] extend the work of [15] and propose a series of algorithms for the
different types of matching. These algorithms are designed to support a customizable
matching process that permits the user to control the matched attributes, the order in

18

which attributes are compared, as well as the way the sufficiency is computed for all
matching types.

1.7.4 Lack of accurate ranking of matching Web services

In Semantic Web service, a service rank is a quantitative metric that shows the im-
portance of a service within the process of service selection mechanism. It is known
that semantic based service discovery concerns on the matchmaking process between
customer’s requirement and service profile or description. Its semantic matchmaking
process plays a role as a ranking mechanism in service selection process. However rank-
ing based on semantic similarity does not suit for efficient service selection. Because,
from customers perspective, it is always not true that a Web service with high seman-
tic similarity is suitable than a Web service with lower similarity. The other difficulty
with semantic similarity is that the users find it hard to distinct which service is better
suitable between a pool of similar services [70].

To achieve better ranking performance many ranking algorithms have been pro-
posed in the literature. One such approach is to integrate more information besides
semantic information. The information may range from time, place, location [47], cus-
tomer and providers situation [55], etc. The limitation with this approach is that the
system becomes more complicated when new constraints are added. To overcome this,
the authors in [57] have proposed a social collaborative filtering method for ranking.
This method makes use of learning other users previous experiences. This method is
used successfully in all kinds of recommendation systems but the limitations with this
method are information distortion and independence of service selection.

Table 1.2: Comparison of matchmaking framework
Matchmaker Matching Matched Customization Ranking Markup

type attributes support Language
Jini [4] Syntatic Capability attributes No No No Markup Language
Konark [50] Syntatic Capability attributes No No XML
Salutation [62] Logic-based Capability attributes No Yes OWL-S
MatchMaker [77] Syntactic Capability attributes No No DAMS/UDDI
RACER [51] Syntactic Capability attributes No No DAML-S
PSMF [24] Logic-based Capability attributes Yes No DAML-S/WSDL/UDDI
SPARQLent [73] Logic-based Capability attributes No Yes OWL-S
iSeM-logic-based [43] Logic-based Capability attributes No Yes OWL-S/SAWSDL
QoSeBroker [16] Logic-based Capability/QoS/

Property attributes
Yes No OWL-S

1.8 Conclusion

In this chapter, we mainly discuses several existing matchmaking frameworks and we
concluded that these frameworks present at least one of the following shortcomings:
(i) use of strict syntactic matching; (ii) use of capability-based matchmaking; (iii)
lack of customisation support; and (iv) lack of accurate ranking of matching Web ser-
vices. Although that there are some recent and intersecting matchmaking frameworks
[42][7][64][24][15][16], they fail to take into jointly the shortcomings of Web matchmak-
ing discussed earlier. In the rest of this report, we will propose several solutions to deal

19

with the above-cited shortcomings.
The next chapter, we improves the matchmaking algorithms proposed in a series

of semantic matching algorithms supporting different levels customisation. These al-
gorithms permit to fully overcome the first and third shortcomings of semantic match-
making frameworks that we have addressed in Section 1.7. The second shortcoming
is not addressed in this research project. However, the QoS-based semantic match-
ing algorithms proposed in [16] can solve this issue. The fourth shortcoming will be
addressed in the Chapter 4.

20

Chapter 2

Web Services Matching

This chapter first introduces two improved algorithms for computing the
similarity measure between two Web service attributes. Then, it presents
three algorithms for functional matching. The trivial matching algorithm
supports no customization. The partially parameterized matching algo-
rithm allows the user to specify the set of attributes to be used in the
matching. The fully parameterized matching algorithm allows the user
to control the matched attributes, the order in which attributes are com-
pared, as well as the way the sufficiency is computed. The chapter also
discusses the extension of the proposed matching algorithms to other
types of matching and compare them some existing ones.

2.1 Introduction

In [15][16], the authors distinguish three types of service matching: (i) functional
attribute-level matching that implies capability and property attributes and consider
each matching attribute independently of the others; (ii) functional service-level match-
ing that considers capability and property attributes but the matching operation im-
plies attributes both independently and jointly; and (iii) non-functional matching which
focuses on the attributes related to the QoS. Furthermore, the authors in [15][16] iden-
tify three types of functional attribute-level matching: (i) conjunctive matching based
on the use of “AND” connector, (ii) disjunctive matching based on the use of “OR”
connector, and (iii) complex matching that uses different logical connectors, especially
“AND”, “OR” and “NOT” operators.

In this chapter, we focalize mainly on functional attribute-based conjunctive al-
gorithm. More specifically, we propose three algorithms for functional attribute-based
conjunctive matching supporting different levels of customization. The trivial matching
algorithm supports no customization. The partially parameterized matching algorithm
allows the user to specify the set of attributes to be used in the matching. The fully
parameterized matching algorithm allows the user to control the matched attributes,
the order in which attributes are compared, as well as the way the sufficiency is com-

21

puted. The chapter also discusses the extension of the proposed matching algorithms
to other types of matching and compare them some existing ones. These algorithms
generalize and improve the ones proposed in [7][15][16][24].

A common operation in the matching algorithms concerns the computing of the
similarity measure between two Web service attributes. In the first part of this chapter,
based on the work of [7], we introduce two improved algorithms for computing the
similarity measure. The first algorithm affects the precision of [7]’s algorithm but
improves considerably its complexity. The second algorithm enriches the semantic
distance values used in [7]’s algorithm but ameliorates considerably its precision.

The chapter is structured as follows. Section 2.2 presents some basic definitions.
Section 2.3 introduces the different similarity measure computing algorithms. Section
2.4 details the different functional attribute-based conjunctive matching algorithms.
Section 2.5 extends the matching algorithms to other types of matching. Section 2.6
compares the proposed algorithms to some existing ones. Section 2.7 concludes the
chapter.

2.2 Background

2.2.1 Example scenario

For the purpose of illustration, we consider a Web service use case concerning travel
reservation. This example is freely inspired from a use case scenario described in the
WSC Web Services Architecture Usage Scenarios [35].

A company (travel agent) offers to people the ability to book complete vacation
packages: plane/train/bus tickets, hotels, car rental, excursions, etc. Service providers
(airlines, bus companies, hotel chains, etc) are providing Web services to query their
offerings and perform reservations.

The user gets the location of a travel agent service via an unspecified way (search
engine, service directory, etc).

The user provides a destination and some dates to the travel agent service. The
travel agent service inquires airlines about deals and presents them to the user.

2.2.2 Basic definitions

We introduce some basic definitions of a service and other service-specific concepts.
Some ones are due to [24].

Definition 2.1 (Service) A service S is defined as a collection of attributes that de-
scribe the service. Let S.A denotes the set of attributes of service S and S.Ai denotes
each member of this set. Let S.N denotes the cardinality of this set.⋄

Example 2.1 The travel agent company provides a Web service, bookVacation, that
is defined by the following attributes: service category, input, output, preconditions, post-
conditions, response time, availability, cost, security, and geographical location.⋄

22

Definition 2.2 (Service Capability) The capability of a service S.C is a subset of
service attributes (S.C ⊆ S.A), and includes only functional ones that directly relate to
its working.⋄

Example 2.2 The capability of bookVacation is: S.C = {input, output, preconditions,
postconditions}.⋄

Definition 2.3 (Service Quality) The quality of a service S.Q, is a subset of service
attributes (S.Q ⊆ S.A), and includes all attributes that relate to its QoS.⋄

Example 2.3 The Service Quality of bookVacation is: S.Q = {response time, avail-
ability, cost, security}.⋄

Definition 2.4 (Service Property) The property of a service, S.P , is a subset of
service attributes (S.P ⊆ S.A), and includes all attributes other than those included in
service capability or service quality.⋄

Example 2.4 The property of bookVacation is: S.P = {service category, geographical
location}.⋄

2.3 Similarity measure

In this section, we provide two algorithms for computing similarity measure. These
algorithms improve the one proposed in [7], which is presented in Section 2.3.2.

2.3.1 Definitions

A semantic match between two entities frequently involves a similarity measure. The
similarity measure quantifies the semantic distance between the two entities participat-
ing in the match. A similarity measure is defined as follows.

Definition 2.5 (Similarity Measure) The similarity measure, µ, of two service at-
tributes is a mapping that measures the semantic distance between the conceptual an-
notations associated with the service attributes. Mathematically,

µ : A×A→ V

where A is the set of all possible attributes and V the set of possible semantic distance
measures.⋄

There are different possible definition of set V . In [24][15], for instance, the mapping
between two conceptual annotations may take one of the following values: Exact,
Plugin, Subsumption, Container, Part-of and Disjoint.

A preferential total order may now be established on the above mentioned similarity
maps.

23

Definition 2.6 (Similarity Measure Preference) Let V be the set of all possible
semantic distance values such that V = {v1, v2, · · · , vn}. Preference amongst the simi-
larity measures is governed by the following strict order.

v1 ≻ v2 ≻ · · · ≻ vn,

where a ≻ b means that a is preferred over b.⋄

Definition 2.7 (Degree of Match) The degree of match is a function that defines a
semantic distance value between two conceptual annotations. Mathematically,

δ : CA1 × CA2 → V

where CA1 denotes the first conceptual annotation and CA2 denotes the second con-
ceptual annotation and V the set of all possible semantic distance values.⋄

This generic definition of similarity measure extends the one proposed by [24]. Other
matchmaking frameworks (e.g. [7][64][77]) utilize an idea similar to µ, but label it
differently. The main difference between the above-cited work concerns the way the
degree of match is computed. In sections 2.3.3 and 2.3.4, we provide two algorithms
for computing the similarity measure. These algorithms improve the one proposed by
[7], which is presented in the next section.

2.3.2 Bellur and Kulkarni’s similarity computing algorithm

2.3.2.1 Computing the degree of match

Bellur and Kulkarni [7] define the elements of the semantic distance values set according
to Table 2.1.

Table 2.1: Elements of the semantic distance values set V
V Semantic distance value

v1 Exact

v2 Plugin

v3 Subsume

v4 Fail

The degree of match between two conceptual annotations δ is established according
to Algorithm 2 where:

• ≡: Equivalence relationship;

• ❂1: Direct parent/child relationship;

• ❂: Indirect parent/child relationship;

• ❁: Direct or indirect child/parent relationship.

24

Algorithm 2: Degree of Match δ(·, ·) as defined in [7]
Input : CAa, // first concept.

CAb, // second concept.
Output: degree of match

1 if (CAa ≡ CAb) then
2 return Exact;
3 else if (CAa ❂1 CAb) then
4 return Plugin;
5 else if (CAa ❂ CAb) then
6 return Plugin;
7 else if (CAa ❁ CAb) then
8 return Subsume;
9 else

10 return Fail;
11 endif

2.3.2.2 Computing the similarity measure

The computing of the similarity measure over two attributes is modeled by Bellur and
Kulkarni [7] as a bipartite graph matching. Let first introduce some concepts.

Definition 2.8 (Bipartite Graph) A graph G = (V0 + V1, E) with disjoint vertex
sets V0 and V1 and edge set E is called bipartite if every edge connects a vertex of V0

with a vertex of V1 and there are no edge in E with both endpoints are in V0 or in V1.⋄

Definition 2.9 (Matching in a Bipartite Graph) [7] Let G = (V,E) be a bipartite
graph. A matching M of G is a subgraph G′ = (V,E′), E′ ⊆ E, such that no two edges
e1, e2 ∈ E′ share the same vertex. A vertex v is matched if it is incident to an edge in
the matching M .⋄

Let SR be a service request and SA be a service advertisement. The matching
between SR.Ai and SA.Aj (i.e. µ(SR.Ai, S

A.Aj)) is computed as follows:

1. Construction of the bipartite graph. Let CA0 and CA1 be the sets of concepts
corresponding to the attributes SR.Ai and SA.Aj , respectively. These two sets
are the vertex sets of the bipartite graph G. In other words, G = (V0 + V1, E)
where V0 = CA0 and V1 = CA1. Considering two concepts a ∈ V0 and b ∈ V1.
An edge between a and b is valued with the degree of match between a and b, i.e.,
δ(a, b). Then, Bellur and Kulkarni [7] assign a numerical weight to every edge
in the bipartite graph as given in Table 2.2. These weights verify the following
constraints:

w1 ≤ w2 ≤ w3 ≤ w4. (2.1)

2. Selection of the optimal matching. A matching is selected only if it fulfills an
injective mapping between V0 and V1. Figure 2.1 presents two matchings. The
first one respects the injective mapping between V0 and V1 while the second does

25

Table 2.2: Weighting system
Degree of match Weight of edge

Exact w1

Plugin w2

Subsume w3

Fail w4

not. A bipartite graph G may contain several possible matchings. In this case,
we need to identify the optimal matching. According to Bellur and Kulkarni [7],
the optimal matching is the one that minimizes max(wk) with max(wk) is the
maximum weighted edge in the matching. The final returned degree corresponds
to the label of the edge that maximizes max(wi) in the obtained matching.

Figure 2.1: Matching examples

To select the optimal matching, Bellur and Kulkarni [7] propose the use of the
Hungarian algorithm [48]. However, the application of Hungarian algorithm using the
weighing system given in Table 2.2 is not not possible. This because the Hungarian
algorithm minimizes the sum of weights while the optimal matching is the one that
minimizes the maximum weight. Bellur and Kulkarni [7] proved that a modification
in weights as in Table 2.3 permits the Hungarian algorithm to identify correctly the
optimal matching.

Table 2.3: Improved weighting system
Degree of match Weight of edge

Exact w1 = 1
Plugin w2 = (w1 ∗ |V0|) + 1
Subsume w3 = (w2 ∗ |V1|) + 1
Fail w4 = w3 ∗ 100

The computing of the similarity measure µ(·, ·) as described above is formalized in
Algorithm 3. The function ComputeWeights applies the weight changes as described

26

in Table 2.3. The function HungarianAlg implements the Hungarian Algorithm [48].
The w(a, b) in Algorithm 3 is the weight associated to edge (a, b).

Algorithm 3: SimilarityMeasure (as in Bellur and Kulkarni [7])

Input : SR.Ai, // attribute Ai in requested service.
SA.Aj , // attribute Aj in advertised service.

Output: µ(SR.Ai, SA.Aj)// similarity measure between SR.Ai and SA.Aj .
1 Graph G← EmptyGraph(V0 + V1, E);
2 V0 ← concepts of attribute Ai in requested service;
3 V1 ← concepts of attribute Aj in advertised service;
4 (w1, w2, w3, w4)←ComputeWeights();
5 for (each a ∈ V0) do
6 for (each b ∈ V1) do
7 SemanticDistance← δ(a, b);
8 if (SemanticDistance = Exact) then
9 w(a, b)← w1

10 else
11 if (SemanticDistance = Plugin) then
12 w(a, b)← w2

13 else
14 if (SemanticDistance = Subsume) then
15 w(a, b)← w3

16 else
17 w(a, b)← w4

18 M ← HungarianAlg(G);
19 Let (a′, b′) denotes the maximal weighted edge in M ;
20 F inalSemanticDistance← δ(a′, b′);
21 return F inalSemanticDistance;

The optimality criterion used in [7] is designed to minimize the false positives and
the false negatives. In fact, minimizing the maximal weight would minimize the ‘Fail’
labeled edges. However, the choice of max(wi) as a final return value is restrictive and
the risk of false negatives in the final result is higher. To avoid this problem, we propose
to consider both max(wi) and min(wi) as pertinent values in the matching.

In the two next sections, we introduce two different algorithms for the computing the
similarity measure. These algorithms are based on Bellur and Kulkarni [7]’s approach.
The main difference concerns the computation of degree of match δ(·, ·).

2.3.3 Efficient computation of the similarity measure

The semantic distance values are defined similarly to Bellur and Kulkarni [7] (see Table
2.1). The improvement concerns the degree of match which is now computed as in
Algorithm 4 where:

• ≡: Equivalence relationship;

• ❁1: Direct child/parent relationship;

• ❂1: Direct parent/child relationship.

27

In this version of the algorithm, only direct related concepts are considered for
Plugin and Subsume semantic distance values. This change affects the precision of
the algorithm since it uses a small set of possible concepts. However, it improves
considerably its complexity. In fact, there is no need to use inference: only facts
are parsed in the related ontology, which reduces the complexity of Algorithm 4 (as
discussed in Section 2.3.5).This will necessarily improves the query response time. The
proposed algorithm provides a balance between response time and precision, which is
valuable in critical situations.

Algorithm 4: Degree of Match δ(·, ·) for an efficient computation of µ(·, ·)
Input : CAR, // first concept.

CAA, // second concept.
Output: degree of match

1 if (CAR ≡ CAA) then
2 return Exact;
3 else if (CAR ❁1 CAA) then
4 return Plugin ;
5 else if (CASR ❂1 CAA) then
6 return Subsumes;
7 else
8 return Fail ;
9 endif

The computation of the similarity measure is the same as in Bellur and Kulkarni
[7] (see Algorithm 3) but the interpretation of the semantic distances is as given in the
beginning of this section.

2.3.4 Accurate computation of the similarity measure

In this case, we define six semantic distance values, which are given in Table 2.4. The
basic idea of this second improvement is that the precision of the algorithm increases
with the number of granular values.

Table 2.4: Elements of the semantic distance values set V
V Semantic distance value

v1 Exact

v2 Plugin

v3 Subsume

v4 Extended-Plugin

v5 Extended-Subsume

v6 Fail

In this version of the similarity measure, the improvement is also made over the
computing of degree of match δ(·, ·), which is now computed according to Algorithm 5
where:

• ≡: Equivalence relationship (it does not need inference);

28

• ❁1: Direct child/parent relationship;

• ❂1: Direct parent/child relationship;

• ❁: Indirect child/parent relationship;

• ❂: Indirect parent/child relationship.

Then, we define an extended weighting system as Table 2.5. These weights verify
the following constraints:

w1 ≤ w2 ≤ w3 ≤ w4 ≤ w5 ≤ w6 (2.2)

Table 2.5: Extended weighting system
Degree of match Weight of edge

Exact w1

Plugin w2

Subsume w3

Extended-Plugin w4

Extended-Subsume w5

Fail w6

Algorithm 5: Degree of match δ(·, ·) for the accurate computation of µ(·, ·)
Input : CAR, // first concept.

CAA, // second concept.
Output: degree of match//

1 if (CAR ≡ CAA) then
2 return Exact ;
3 else if (CAR ❁1 CAA) then
4 return Plugin ;
5 else if (CAR ❂1 CAA) then
6 return Subsume ;
7 else if (CAR ❁ CAA) then
8 return Extended-Plugin ;
9 else if (CAR ❂ CAA) then

10 return Extended-Subsume ;
11 else
12 return Fail;
13 endif

In this algorithm, the consideration of indirect concepts is performed for both
Extended-Plugin and Extended-Subsume semantic distance values. Following Defi-
nition (2.6), we have the following preference order:

Exact ≻ Plugin ≻ Subsume ≻ Extended-plug-in ≻ Extended-subsume ≻ Fail.

Direct relations (i.e. Plugin and Subsume) are preferred to indirect relations (i.e.
Extended-Plugin and Extended-Subsume). To argument this choice, let consider the

29

Ontology fragment in Figure 2.2. A vehicle provider cannot offer every type of vehicles.
This also true for the offered cars type. Hence, when the distance between the advertised
concept and the requested concept increase, the match between the two concepts is less
and less relevant.

Figure 2.2: Fragment of the vehicle ontology

To apply the Hungarian Algorithm [48], we need to modify the weights as described
in Table 2.6.

Table 2.6: Improved weighting system
Degree of match Weight of edge

Exact w1 = 1
Plugin w2 = (w1 ∗ |V0|) + 1
Subsume w3 = (w2 ∗ |V1|) + 1
Extended-Plugin w4 = (w3 ∗ |V1|) + 1
Extended-Subsume w5 = (w4 ∗ |V1|) + 1
Fail w6 = w5 ∗ 100

The computation of the similarity measure is given in Algorithm 6. This algorithm
extends the one proposed by Bellur and Kulkarni [7] (see Algorithm 3). The function
ComputeWeights applies the weight changes as described in Table 2.6. The function
HungarianAlg implements the Hungarian Algorithm [48]. The w(a, b) in Algorithm
6 is the weight associated to edge (a, b).

2.3.5 Computational complexity

In this section we discuss the complexity of Algorithms 3 and 6. The most expensive
operation is these algorithms is the computing of the degree of match. As underlined

30

Algorithm 6: SimilarityMeasure

Input : SR.Ai, // attribute Ai in requested service.
SA.Aj , // attribute Aj in advertised service.

Output: µ(SR.Ai, S
A.Aj)// similarity measure between SR.Ai and SA.Aj .

1 Graph G← EmptyGraph(V0 + V1, E);
2 V0 ← concepts of attribute Ai in requested service;
3 V1 ← concepts of attribute Aj in advertised service;
4 (w1, w2, w3, w4, w5, w6)←ComputeWeights() ();
5 for (each a ∈ V0) do
6 for (each b ∈ V1) do
7 SemanticDistance←δ(a,b);
8 if (SemanticDistance = Exact) then
9 w(a, b)← w1

10 else
11 if (SemanticDistance = Plugin) then
12 w(a, b)← w2

13 else
14 if (SemanticDistance = Subsume) then
15 w(a, b)← w3

16 else
17 if (SemanticDistance = Extended-Plugin) then
18 w(a, b)← w4

19 else
20 if (SemanticDistance = Extended-Subsume) then
21 w(a, b)← w5

22 else
23 w(a, b)← w6

24 M ←HungarianAlg (G);
25 Let (a′, b′) denotes the maximal weighted edge in M ;
26 F inalSemanticDistance ← δ(a’,b’);
27 return F inalSemanticDistance;

in [24], inferring degree of match by ontological parse of pieces of information into facts
and then utilizing commercial rule-based engines which use the fast Rete [28] pattern-
matching algorithm leads to O(|R||F ||P |) where |R| is the number of rules, |F | is the
number of facts, and |P | is the average number of patterns in each rule. Accordingly,
the complexity of Algorithms 2 and 5 is O(|R||F ||P |). However, the computing the
degree of match according to Algorithm 4 is only O(|F |) since there is not inference.

Let now discuss the algorithmic complexity of Bellur and Kulkarni [7]’s approach.
Letm be an approximation of the number of concepts for the attributes to be compared.
Then:

1. the computation of weights is an operation of O(1) complexity;

2. the construction of the graph involves the comparison of every pair of concepts.
It takes then O(m2) time complexity;

3. the Hungarian Algorithm has a time complexity of O(m3).

31

4. the degree of match in Algorithm 2 is either O(|R||F ||P |).

Generally, m is likely to take small values so we will consider it as a constant.
The overall time complexity of Bellur and Kulkarni [7]’s algorithm is than O(1 +
m2|F ||R||P |+m3) ≃ O(|F ||R||P |).

Based on the above discussion, the complexity of Bellur and Kulkarni [7]’s algorithm
will be O(1 +m2 | F | +m3) ≃ O(| F |) when the degree of similarity is computed as
in Algorithm 4.

The computation of the similarity measure according to Algorithm 6 is the same as
[7]’s algorithm, i.e., O(1 +m2|F ||R||P | +m3) ≃ O(|F ||R||P |).

2.4 Matching algorithms

In this section we provide three functional attribute-based conjunctive matching algo-
rithms. These algorithms support different levels of customization. The first algorithm
(Section 2.4.1) supports no customization. The second algorithm (Section 2.4.2) sup-
ports allows the user to specify the set of attributes to be used in the matching. The
last algorithm (Section 2.4.3) allows the user to control the matched attributes, the
order in which attributes are compared, as well as the way the sufficiency is computed.

2.4.1 Trivial matching algorithm

In this first case, we assume that the user can specify only the functional specification
of the desired service. Let SR be the service that is requested, and SA be the service
that is advertised. A sufficient functional attribute-level conjunctive match between
SR and SA can be defined as follows.

Definition 2.10 (Sufficient Functional Conjunctive Trivial Match) Let SR be the ser-
vice that is requested, and SA be the service that is advertised. A sufficient conjunctive
match exists between SR and SA if for every attribute in SR.A there exists an identi-
cal attribute of SA.A and the similarity between values of the attributes does not fail.
Formally,

∀i∃j(S
R.Ai = SA.Aj) ∧ µ(SR.Ai = SA.Aj) ≻ Fail

⇒ SuffFuncConjMatch(SR, SA) 1 ≤ i ≤ SR.N.⋄
(2.3)

According to this definition, all the attributes of the requested SR should be con-
sidered during the matching process. This is the default case with no support of
customization.

The functional attribute-level conjunctive match is formalized in Algorithm 7. This
algorithm follows directly from Sentence (2.3). Algorithm 7 proceeds as follows:

1. Loops over the set of attributes SR.A of the requested service SR and for each one
identify the corresponding attribute in advertised service SA. The corresponding
attributes are appended into two different lists rAttrSet (for requested service

32

SR) and aAttrSet (for advisable service SA). This operation is implemented by
sentences 1 to 7 in Algorithm 7.

2. Loops over the corresponding attributes and for each one computes the similarity
measure. The processes stops if the current compared pairs of attributes are not
similar. This operation is implemented by sentences 8 to 11 in Algorithm 7.

The output of Algorithm 7 is either success (if all the attributes of the requested
service SR have similar attributes in the advertised service SA) or fail (if the similarity
for at least one attribute of the requested SR.A fails).

Algorithm 7: Trivial Matching

Input : SR, // Requested service.
SA, // Advertised service.

Output: Boolean, // fail/success.
1 while

(

i ≤ SR.N
)

do
2 Append SR.Ai to rAttrSet;

3 while
(

k ≤ SA.N
)

do
4 if

(

SA.Ak = SR.Ai

)

then
5 Append SA.Ak to aAttrSet;

6 k ←− k + 1;

7 i←− i+ 1;

8 while
(

t ≤ SR.N
)

do
9 if (µ(rAttrSet[t], aAttrSet[t]) = Fail) then

10 return fail;

11 t←− t+ 1;

12 return success;

The function µ(·, ·) in Algorithm 7 permits to compute the similarity degrees using
one of the following algorithms:

• Bellur and Kulkarni [7]’s algorithm (see Algorithm 3) where the degrees of match
are computed by Algorithm 2.

• Bellur and Kulkarni [7]’s algorithm (see Algorithm 3) where the degrees of match
are computed by Algorithm 4.

• Algorithm 6 where the degrees of match are computed by Algorithm 5.

The complexity of Algorithm 7 is discussed in Section 2.4.4 and the extension to
other types of functional matching is presented in Section 2.5.

2.4.2 Partially parameterized matching algorithm

In this case the user can specify the list of attributes to consider during the information.
In order to allow this, we use the concept of Attributes List that serves as a parameter
to the matching process.

33

Definition 2.11 (Attributes List) An Attributes List, L, is a relation consisting of
one attribute, L.A that describes the service attribute to be compared. Let L.Ai denotes
the service attribute value in the ith tuple of the relation. L.N denotes the total number
of tuples in L.⋄

Example 2.5 Table 2.7 shows a Attributes List example.⋄

Table 2.7: An example Attributes List
L.A

input

output

precondition

postcondition

Let SR be the service that is requested, and SA be the service that is advertised.
A sufficient functional attribute-level conjunctive match between services can now be
defined as follows.

Definition 2.12 (Sufficient Functional Conjunctive Match) Let SR be the service
that is requested, and SA be the service that is advertised. Let L be a Attributes List.
A sufficient conjunctive match exists between SR and SA if for every attribute in L.A

there exists an identical attribute of SR and SA and the similarity between values of
the attributes does not fail. Formally,

∀i∃j,k(L.Ai = SR.Aj = SA.Ak) ∧ µ(SR.Aj , S
A.Ak) ≻ Fail

⇒ SuffFuncConjMatch(SR, SA) 1 ≤ i ≤ L.N.⋄
(2.4)

According to this definition, only the attributes specified by the user in the At-
tributes List are considered during the matching process.

The partially parameterized functional attribute-level conjunctive match is formal-
ized in Algorithm 8. This algorithm follows directly from Sentence (2.4). Algorithm 8
proceeds as follows:

1. Loops over the set of attributes in L.A and for each one identify the corresponding
attribute in requested SR advertised SA services. The corresponding attributes
are appended into two different lists rAttrSet (for requested service SR) and
aAttrSet (for advisable service SA). This operation is implemented by sentences
1 to 10 in Algorithm 8.

2. Loops over the corresponding attributes list and for each one computes the sim-
ilarity measure. The processes stops if the current compared pairs of attributes
are not similar. This operation is implemented by sentences 11 to 14 in Algorithm
8.

The output of Algorithm 8 is either success (if for every attribute in the Attributes
List L there similar attributes in the advertised service SA) or fail (if the similarity for
at least one attribute in the Attributes List L fails).

34

Algorithm 8: Partially Parameterized Matching

Input : SR, // Requested service.
SA, // Advertised service.
L, // Criteria List.

Output: Boolean, // fail/success.
1 while (i ≤ L.N) do
2 while

(

j ≤ SR.N
)

do
3 if

(

SR.Aj = L.Ai

)

then
4 Append SR.Aj to rAttrSet;

5 j ←− j + 1;

6 while
(

k ≤ SA.N
)

do
7 if

(

SA.Ak = L.Ai

)

then
8 Append SA.Ak to aAttrSet;

9 k ←− k + 1;

10 i←− i+ 1;

11 while (t ≤ L.N) do
12 if (µ(rAttrSet[t], aAttrSet[t]) = Fail) then
13 return fail;

14 t←− t+ 1;

15 return success;

The remark given after Algorithm 7 and which concerns the computing of the
similarity measure µ(·, ·) still hold for Algorithm 8.

The complexity of Algorithm 8 is discussed in Section 2.4.4 and the extension to
other types of functional matching is presented in Section 2.5.

2.4.3 Fully parameterized matching algorithm

In this case the user can control the matched attributes, the order in which attributes
are compared, as well as the way the sufficiency is computed. Three customization are
taken into account in this case:

1. A first customization consists in allowing the user to specify the list of attributes
to consider;

2. A second customization consists in allowing the user to specify order in which the
attributes are considered;

3. A third customization is to allow the user to specify a desired similarity measure
for each attribute.

In order to support all these customizations, we use the concept of Criteria Table,
introduced by [24], that serves as a parameter to the matching process.

Definition 2.13 (Criteria Table) A Criteria Table, C, is a relation consisting of
two attributes, C.A and C.M . C.A describes the service attribute to be compared, and
C.M gives the least preferred similarity measure for that attribute. Let C.Ai and C.Mi

denote the service attribute value and the desired measure in the ith tuple of the relation.
C.N denotes the total number of tuples in C.⋄

35

Example 2.6 Table 2.8 shows a Criteria Table example.

Table 2.8: An example Criteria Table
C.A C.M

input Exact

output Exact

service category Subsumes

Let SR be the service that is requested, and SA be the service that is advertised.
Based on the concept of Criteria Table, a sufficient functional attribute-level conjunctive
match between services is defined as follows.

Definition 2.14 (Sufficient Fully Parameterized Match) PartiallyParam Let SR

be the service that is requested, and SA be the service that is advertised. Let C be a
criteria table. A sufficient conjunctive match exists between SR and SA if for every
attribute in C.A there exists an identical attribute of SR and SA and the values of the
attributes satisfy the desired similarity measure as specified in C.M . Formally,

∀i∃j,k(C.Ai = SR.Aj = SA.Ak) ∧ µ(SR.Aj , S
A.Ak) � C.Mi

⇒ SuffFuncConjMatch(SR, SA) 1 ≤ i ≤ C.N .⋄
(2.5)

According to this definition, only the attributes specified by the user in the Criteria
Table are considered during the matching process.

The fully parameterized functional attribute-level conjunctive match is formalized in
Algorithm 9. The matching algorithm follows directly from Sentence (2.5). Algorithm
9 proceeds as follows:

1. Loops over the Criteria Table and for each attribute it identifies the corresponding
attribute in the requested service SR and the potentially advisable service under
consideration SA. The corresponding attributes are appended into two different
lists rAttrSet (for requested service SA) and aAttrSet (for advisable service
SA). This operation is implemented by sentences 1 to 10 in Algorithm 9.

2. Loops over the Criteria Table and for each attribute it computes the similarity
degree between the corresponding attributes in aAttrSet and aAttrSet. This
operation is implemented by sentences 11 to 14 in Algorithm 9.

The output of Algorithm 8 is either success (if for every attribute in the Criteria
Table C there are similar attributes in the advertised service SA) or fail (if the similarity
for at least one attribute in the Criteria Table C fails).

The remark given after Algorithm 7 and which concerns the computing of the
similarity measure µ(·, ·) still hold for Algorithm 9.

36

Algorithm 9: Fully Parameterized Matching

Input : SR, // Requested service.
SA, // Advertised service.
C, // Criteria Table.

Output: Boolean, // fail/success.
1 while (i ≤ C.N) do
2 while

(

j ≤ SR.N
)

do
3 if

(

SR.Aj = C.Ai

)

then
4 Append SR.Aj to rAttrSet;

5 j ←− j + 1;

6 while
(

k ≤ SA.N
)

do
7 if

(

SA.Ak = C.Ai

)

then
8 Append SA.Ak to aAttrSet;

9 k ←− k + 1;

10 i←− i+ 1;

11 while (t ≤ C.N) do
12 if (µ(rAttrSet[t], aAttrSet[t]) ≺ C.Mt) then
13 return fail;

14 t←− t+ 1;

15 return success;

The complexity of Algorithm 9 is discussed in Section 2.4.4 and the extension to
other types of functional matching is presented in Section 2.5.

Finally, we remark that the matching algorithms presented permits to compute
the similarly between a requested service SR and advertised service SA. In practice,
however, matching process should consider all the Web services available in the registry.
The matching algorithm that we proposed in [30] take into account this fact.

2.4.4 Computational complexity

In this section we discuss the complexity of the three matching algorithms introduced in
Sections 2.4.1, 2.4.2 and 2.4.3. Let us first focus on the complexity of computing µ(·, ·),
which is common to the three algorithms. As discussed in Section 2.3.5, complexity
of computing µ(·, ·) depends on the the computing of the degree of match which may
or not require to use the inference. According to our discussion in Section 2.3.5, the
complexity of computing µ(·, ·) is O(|R||F ||P |) if Algorithm 2 or Algorithm 5 are used
to compute the degree of match, or is only O(|F |) if Algorithm 4 is used to compute
the degree of match. In what follows, we denoted by α the complexity of computing
µ(·, ·).

Let first consider Algorithm 7. Generally, we have SA.N ≫ SR.N . Then, the
complexity of the first outer while loop in Algorithm 7 is O(SA.N). Then, the worst
case complexity of Algorithm 7 is O(SA.N) + α. Furthermore, we observe, as in [24],
that the process of computing µ(·, ·) is the most ‘expensive’ step of the algorithms.
Hence, the complexity of Algorithm 7 is O(SA.N) + α ≍ α.

Let now focalize on Algorithms 8 and 9. Generally, we have SA.N ≫ SR.N . Hence
the complexity of the first outer while loop in Algorithm 8 is O(L.N × SA.N). Then,
the worst case complexity of Algorithm 8 is O(L.N ×SA.N)+α. Based on the remark

37

of [24], the complexity of Algorithm 8 is O(L.N × SA.N) + α ≍ α. In similar way, the
worst case complexity of Algorithm 9 is O(C.N × SA.N) + α ≍ α.

2.5 Extension of matching algorithm

The this section, we extend the proposed matching algorithms to other types of match-
ing, namely, functional attribute-level disjunctive matching (Section 2.5.1), functional
attribute-level generic matchmaking (Section 2.5.2) and functional service-level match-
ing (Section 2.5.3).

The discussion that follow assumes a fully parameterized matching as in Section
2.4.3. The extension to trivial matching (see Section 2.4.1) or partially parameterized
matching (see Section 2.4.2) is similar to fully parameterized matching (the difference
concerns mainly the list of parameters to be used). Finally, we indicate that some parts
of the rest of this section are reproduced from [15][16] with minor modifications.

2.5.1 Functional attribute-level disjunctive matching

A less restrictive definition of sufficiency consists in using a disjunctive rule on the
individual matching measures. The attribute-level disjunctive matching is defined as
follows.

Definition 2.15 (Sufficient Functional Disjunctive Match) Let SR be the ser-
vice that is requested, and SA be the service that is advertised. Let C be a criteria
table. A sufficient disjunctive match exists between SR and SA if for at least one
attribute in C.A it exists an identical attribute of SR and SA and the values of the
attributes satisfy the desired similarity measure as specified in C.M . Formally,

∃i,j,k(C.Ai = SR.Aj = SA.Ak) ∧ µ(SR.Aj , S
A.Ak) � C.Mi

⇒ SuffFunctionalDisjunctiveMatch(SR, SA).⋄
(2.6)

The functional attribute-level disjunctive match is formalized in similar way to Al-
gorithm 9. The main change concerns the last while loop in 9 which should be replaced
by the following:

while (t < C.N) do
if (µ(rAttrSet[t], aAttrSet[t]) � C.Mt) then

return success;

Assign t←− t+ 1;

2.5.2 Functional attribute-level generic matchmaking

In this section we extend the algorithms proposed above to generic binary connectors by
allowing the user specify the conditional relationships between the different capability
and property attributes. In order to define the sufficient functional attribute-level
generic match, we need to introduce the concept of sufficient single attribute match.

The sufficient single attribute match is defined as follows.

38

Definition 2.16 (Sufficient Single Attribute Match) Let SR be the service that
is requested, and SA be the service that is advertised. Let C be a criteria table. A
sufficient match exists between SR and SA in respect to attribute SR.Ai if there exists
an identical attribute of SA and the values of the attributes satisfy the desired similarity
measure as specified in C.Mi. Formally, then:

∃j,k(C.Ai = SR.Aj = SA.Ak) ∧ µ(SR.Aj , S
A.Ak) � C.Mi)

⇒ SuffSingleAttrMatch(SR, SA, Ai).⋄
(2.7)

The single attribute matching is formalized in Algorithm 10. This algorithm follows
directly from Sentence (2.7).

Algorithm 10: SuffSingleAttrMatching

Input : SR, // requested service.
SA, // advertised requested.
C, // criteria table.
i, // service attribute index.

Output: Boolean// success: true; fail: false.
1 while

(

j ≤ SR.N)
)

do
2 if

(

SR.Aj = C.Ai

)

then
3 Append SR.Aj to rAttrSet; ;

4 Assign j ←− j + 1; ;

5 while
(

k ≤ SA.N
)

do
6 if

(

SA.Ak = C.Ai

)

then
7 Append SA.Ak to aAttrSet; ;

8 Assign k ←− k + 1; ;

9 if (µ(rAttrSet[i],aAttrSet[i]) � C.Mi) then
10 return success; ;

11 return fail; ;

The sufficient functional generic match can then be defined as follows.

Definition 2.17 (Sufficient Functional Generic Match) Let SR be the service that
is requested, and SA be the service that is advertised. Let C be the criteria table. Let T
be a complex logical clause where operands are the attributes related by logical operators
(e.g. or, and, not). A sufficient functional generic match between SR and SA holds if
and only the logical clause T holds. Formally,

Parse(T) ∧Evaluate(T)
⇒ SuffAttrGenericMatch(SR, SA).⋄

(2.8)

where Parse and Evaluate are functions devoted respectively to parse and evaluate
the logical expression T .⋄

Example 2.7 The following are three examples of logical expressions:

• T = A1 and · · · and Aη

• T = A1 or · · · or Aη

39

• T = A5 or (A2 and A3)

It is easy to see that the first and second expressions correspond to conjunctive
and disjunctive attribute-based matching. The third expression is more complex. The
matching holds when either (i) the matching in respect to attribute A5 holds, or (ii)
the matching in respect to attribute A2 and the matching in respect to attribute A3 hold
jointly.⋄

The generic matchmaking is formalized in Algorithm 11. This algorithm follows
directly from Sentence (2.8).

Algorithm 11: FunctionalGenericMatching

Input : SR, // requested service.
SA, // advertised requested.
C, // criteria table.
T , // logical expression.

Output: Boolean// success: true; fail: false.
1 if (NOT(Parse(T)) then
2 return fail; ;

3 T ′ ←− T ; ;
4 Z ←− ∅; ;
5 for (each Al ∈ T

′) do
6 if (Al /∈ Z)) then
7 t←− false; ;

8 t←− SuffSingleAttrMatch(SR, SA, Al); ;
9 replace all Al ∈ T by the value of t; ;

10 Z ←− Z ∪ {Al}; ;

11 if (Evaluate(T)) then
12 return success; ;

13 return fail; ;

2.5.3 Functional service-level matching

The service-level matching concerns both attributes and service levels. It allows the
client to use two types of desired similarity: (i) desired similarity values associated with
each attribute in the criteria table, and (ii) a global desired similarity that applies to
the service as a whole. In order to define the sufficient functional service-level match,
we need to introduce the concept of aggregation rule.

The computing of service-level similarity measure requires the definition of an ag-
gregation rule to combine the similarity measures associated with attributes into a
single measure relative to the service.

Definition 2.18 (Aggregation Rule) An aggregation rule ζ is a mean to combine
the similarity measures into a single similarly measure. Mathematically,

ζ : F1 × · · · × FN → V

40

where Fj = V (j = 1, · · · , N) is the set of possible semantic distance measures as
defined in 2.3; and N is the number of attributes included in the Criteria Table.⋄

The preference amongst similarity measures is governed by the same strict total
order given in Definition 2.6.

Since the similarity measures are defined on an ordinal scale, there are only a few
possible aggregation rules that can be used to combine similarity measures:

• Minimum: picks out the minimum similarity measure,

• Maximum: picks out the maximum similarity measure,

• Median: picks out the similarity measure corresponding to the median (in terms
of order).

• Floor: picks out the similarity measure corresponding to the floor of the median
values.

• Ceil: picks out the similarity measure corresponding to the ceil of the median
values.

The Floor and Ceil rules apply only when there is an even number of similarity
measures (which leads to two median values).

The service-level similarity measure quantifies the semantic distance between the
requested service and the advertised service entities participating in the match by taking
into account both attribute-level and service-level desired similarity measures.

Definition 2.19 (Sufficient Functional Service-Level Match) Let SR be the ser-
vice that is requested, and SA be the service that is advertised. Let C be a criteria table.
Let β be the service-level desired similarity measure. A sufficient service-level match
exists between SR and SA if (i) for every attribute in C.A there exists an identical
attribute of SR and SA and the values of the attributes satisfy the desired similarity
measure as specified in C.M , and (ii) the value of overall similarity measure satisfies
the desired overall similarity measure β. Mathematically,

[∀i (SuffSingleAttrMatch(SR, SA, Ai)) 1 ≤ i ≤ C.η]∧
[∃j1, · · · , ji, · · · , jη (ζ(s1,j1 , · · · , si,ji , · · · , sη,jη) � β)]

⇒ SuffFunctionalServiceLevelMatch(SR, SA),
(2.9)

where ζ is an aggregation rule; and for i = 1, · · · , N , N is the number of attributes
included in the Criteria Table, and ji ∈ {j1, · · · , jN}:

si,ji = µ(SR.Ai, S
A.Aji).⋄

The service-level matching in formalized Algorithm 12. This algorithm follows
directly from Sentence (2.9).

41

Algorithm 12: FunctionalServiceLevelMatching

Input : SR, // requested service.
SA, // advertised requested.
C, // criteria table.
ζ,// aggregation rule.
β,// overall similarity measure.

Output: Boolean// success: true; fail: false.
1 while (i ≤ C.η)) do
2 if

(

NOT (SuffSingleAttrMatch(SR, SA, Ai)))
)

then
3 return fail

4 while (i ≤ C.η)) do
5 while

(

j ≤ SR.N)
)

do
6 if

(

SR.Aj = C.Ai

)

then
7 Append SR.Aj to rAttrSet; ;

8 Assign j ←− j + 1; ;

9 while
(

k ≤ SA.N
)

do
10 if

(

SA.Ak = C.Ai

)

then
11 Append SA.Ak to aAttrSet; ;

12 Assign k ←− k + 1; ;

13 Assign i←− i+ 1; ;

14 if (ζ(µ(rAttrSet[1], aAttrSet[1]), · · · , µ(rAttrSet[C.η], aAttrSet[C.η]))) � β) then
15 return success; ;

16 return fail; ;

2.5.4 Computational complexity

The complexity of the two first while loops in Algorithm 10 is equal to O(SR.N) +
O(SA.N). Since we have generally SA.N ≫ SR.N , hence the complexity of the two
first while loops is equal to O(SA.N). Then, based on the discussion given earlier, we
conclude that the worst case complexity of Algorithm 10 is O(SA.N)+O(|R||F ||P |) ≍
O(|R||F ||P |), where R, F and P have the same definition given earlier.

The complexity of Algorithm 11 depends on the complexity of functions Parse
and Evaluate. The complexity of these functions depends on the data structure used
to represent the logical expression T (graph, truth tables, etc.). Clearly the com-
plexity of Evaluate function is largely greater than the complexity of Parse func-
tion. Accordingly and based on the discussed above, the complexity of Algorithm 11 is
O(|R||F ||P |) +O(γ) where O(γ) is the complexity of Evaluate function.

The complexity of the first while loop in Algorithm 12 is equal toO(C.N×(|R||F ||P |))
and the complexity of the second while loop is equal to O(C.N × SA.N). Finding the
minimum, maximum, median, floor and ceil of a list of values are O(n) worst-case lin-
ear time selection algorithms. Then, the overall complexity of Algorithm 12 is equal to
O(C.N × (|R||F ||P |)) + O(C.N × SA.N) + O(n). Then, the worst case complexity of
Algorithm 12 is O(|R||F ||P |) +O(n).

42

2.6 Comparative study

2.6.1 Computing of similarity measure

In this section, we compare some proposals in respect to similarity measure computing
strategy. The comparison, which is summarized in Table 2.9, consider the following
comparison criteria: the definition of the semantic distance set V ; the computing of
degree of match δ(·, ·); the modelling technique of the matching problem; the level of
precision; and the level of complexity.

Table 2.9 compares our efficient and accurate algorithms to the following ones:
Doshi et al [24], Paollucci et al [64], Bellur and Kulkarni [7], Chakhar [15] and Chakhar
et al [16].

Table 2.9: Comparison of similarity measure computing algorithms
Approach Semantic distance Degree of match (c1, c2) Modelling Precision Complexity

technique
[24] v1=Exact Exact: c1 ≡ c2 Unspecified High Moderate

v2=Plug-in Plug-in: c1 ❁ c2 by the
v3=Subsumption Subsumption: c1 ❂ c2 authors
v4=Container Container: c1 � c2
v5=Part-of Part-of: c1 � 1c2
v6=Disjoint Disjoint: c1 disj2 c2

[64] v1=Exact Exact: c1 ⊑1 c2 Greedy Low High
v2=Plugin Plugin: c1 ❁ c2 Algorithm
v3=Subsume Subsume: c1 ❂ c2
v4=Fail Fail: c1 disj c2

[7] v1=Exact Exact: c1 ≡ c2 Bipartite High Moderate
v2=Plugin Plugin: c1 ❁ c2 Graph
v3=Subsume Subsume: c1 ❂ c2
v4=Fail Fail: c1 disj c2

Efficient v1=Exact Exact: c1 ≡ c2 Bipartite Moderate Low
Algorithm v2=Plugin Plugin: c1 ❁1 c2 Graph

v3=Subsume Subsume: c1 ❂1 c2
v4=Fail Fail: c1 disj c2

Accurate v1=Exact Exact: c1 ≡ c2 Bipartite High Moderate
Algorithm v2=Plugin Plugin: c1 ❁1 c2 Graph

v3=Subsume Subsume: c1 ❂1 c2
v4=Extended-Plugin Extended-Plugin: c1 ❁ c2
v5=Extended-Subsume Extended-Subsume: c1 ❂ c2
v6=Fail Fail: c1 disj c2

2.6.2 Matching algorithms

Table 2.10 compares our matching algorithms to several other matching algorithms in
respect to several criteria including the matching type, matching attributes, customiza-
tion support and complexity.

The first and traditional matchmaking frameworks, such as Jini [4], Konark [50]
and Salutation [62], are based on strict syntactic matching. Such syntactic matching
approaches only performs service discovery and service matching based on particular
interface or keyword queries from the user, which generally leads to low recall and low
precision of the retrieved services [54].

43

Table 2.10: Comparison of matching algorithms
Matchmaker Matching Matched Customization Speed Performance

type attributes support
Jini [4] Syntactic Capability attributes No Slow Low
Konark [50] Syntactic Capability attributes No Slow Low
Salutation [62] Logic-based Capability attributes No
MatchMaker [77] Syntactic Capability attributes No
RACER [51] Syntactic Capability attributes No
PSMF [24] Logic-based Capability attributes Yes Fast Moderate
SPARQLent [72] Logic-based Capability attributes No Moderate Moderate
iSeM-logic-based [43] Logic-based Capability attributes No Fast Low
QoSeBoker[16] Logic-based Capability/QoS/ Property attributes Yes Moderate Moderate
Algorithm 7 Logic-based Capability/Property attributes No Fast High
Algorithm 8 Logic-Based Capability/Property attributes Yes Fast High
Algorithm 9 Logic-based Capability/Property attributes Yes Fast High

44

Some advanced techniques and algorithms (e.g., genetic algorithmic as in [53], utility
function as in [82][86]) have been used to overcome the problem of syntactic matching.

In order to overcome the limitation of strict syntactic matching, many authors
propose to include the concept of semantics as in [7][9][29][34][42][51][64][73][77]. The
use of ontology eliminates the limitations caused by syntactic difference between terms
since matching is now possible on the basis of concepts of Ontologies used to describe
input and output terms [8].

2.7 Conclusion

In this chapter we first first introduced two algorithms the improve the computing of the
similarity proposed in [7]. The first algorithm affects the precision of [7]’s algorithm but
improves considerably its complexity while the second algorithm enriches the semantic
distance values used in [7]’s, ameliorate considerably the precision of [7]’s algorithm.

In the second part of this chapter we detailed thee functional conjunctive and
attribute-based matching algorithms that support three levels of customization: (i)
the trivial matching algorithm supports no customization (ii) partially parameterized
matching algorithm allows the user to specify the set of attributes to be used in the
matching, and (iii) fully parameterized matching algorithm allows the user to control
the matched attributes, the order in which attributes are compared, as well as the way
the sufficiency is computed. These algorithms generalize and improve the proposals
of [7][15][16][24]. The chapter also discusses the extension of the proposed matching
algorithms to other types of matching and compare them some existing ones.

The proposed matching algorithms permits to solve the first and third shortcomings
of semantic matchmaking frameworks. For the second shortcoming, the QoS-based se-
mantic matching algorithms proposed in [16] can be used with very minor modifications.
The next chapter addresses the problem of Web services ranking.

45

Chapter 3

Web Services Ranking

This chapter first presents a technique for computing Web services
scores. Then, it details three approaches for ranking Web services. The
first approach relies on the scores only. The second approach defines and
uses a series of rules to rank Web services. It permits to solve the ties
problem encountered by the first approach. The third approach is based
on the use of a tree data structure. It permits to solve the problem of ties
of the first approach. In addition, it is computationally better than the
second approach. A series of algorithms are proposed for the different
ranking approaches. This chapter also studies the algorithmic complexity
of these algorithms and compares them to some existing ones.

3.1 Introduction

The number of Web services that satisfy the user request may be very high. In practice,
however, it is more appropriate to provide the user with a manageable set of ‘best’ Web
services from which s/he can select one Web service to deploy. A possible solution is
to use some appropriate techniques to rank the Web services and then provide the first
ranked one(s) to the user.

In this chapter, we present three approaches to rank Web services: score-based,
rule-based and tree-based. The score-based approach relies on the use of the scores of
Web services, which are computed based on the input data. Two different versions are
proposed here. They differ only on the way the similarity degrees are computed.

The rule-based ranking approach uses a series of rules to rank the Web services.
The four designed ranking rules can be applied successively to avoid the problem of
ties encountered by the first approach. We note that a first version of the rule-based
ranking approach is available in [30].

The basic idea of the tree-based approach is to use jointly the two different types
of score computing. This approach is operationalized using a tree data structure,
which permits to solve the problem of ties of the first approach. This approach is also
computationally better than the second approach.

46

A series of algorithms are proposed for the different ranking approaches. The pro-
posed ranking algorithms permit to solve the fourth shortcoming of the semantic match-
making frameworks (see Section 1.7).

The chapter is organized as follows. Section 3.2 presents Web services scoring
technique. Sections 3.3, 3.4 and 3.5 detail the score-based, the rule-based and tree-
based ranking approaches, respectively. Section 3.6 compares the proposed ranking
algorithms to some existing ones. Section 3.7 concludes the chapter.

3.2 Scoring Web services

3.2.1 Score definition

In this section, we propose a technique to compte the scores of the Web services based
on the input data. First, we need to assign a numerical weight to every similarity degree
as indicated in Table 3.1. In this report, we assume that the weights are computed as
follows:

w1 ≥ 0, (3.1)

wi = (wi−1 ·N) + 1, i = 2, · · · , N ; (3.2)

where N is the number of attributes. This way of weights computation ensures that
a single higher similarity degree will be greater than a set of N similarity degrees of
lower weights taken together. Indeed, the weights values verify the following condition:

wi > wj ·N, ∀i > j. (3.3)

Table 3.1: Weights of similarity degrees
Similarity degree Weight

Fail w1

Part-of w2

Container w3

Subsumption w4

Plug-in w5

Exact w6

Then, the initial score of an advertised Web service SA is computed as followers:

ρ(SA) =
i=N
∑

i=1

wi. (3.4)

Example 3.1 Assume that the matching algorithm has identified the Web services
shown in Table 3.2. Assume also that the Ontology inference system supports all
the semantic relationships given in Table 3.1. Finally assume that w1 = 0. The
application of Equation (3.4) leads to the following scores: ρ(S1) = 147, ρ(S2) = 174,

47

ρ(S3) = 120, ρ(S4) = 174 and ρ(S5) = 120. For example, by Equation (3.4) we obtain
ρ(S2) = w5+w6+w4. Knowing that w1 = 0, Equation (3.2) leads to w4 = 13, w5 = 40
and w6 = 121. Finally we obtain: ρ(S2) = 13 + 40 + 121 = 174.⋄

Table 3.2: Web services identified by the matching algorithm
Web Service Input Output Service category

S1 Exact Subsume Subsume
S2 plug-in Exact Subsume
S3 Plug-in Plug-in Plug-in
S4 Plug-in Subsume Exact
S5 Subsume Exact Subsume

The scores as computed by Equation (3.4) are not in the range 0-1. Hence, we need
to normalize these scores. The following equation can be used for this purpose:

ρ′(SA) =
ρ(SA)−minK ρ(SK)

maxK ρ(SK)−minK ρ(SK)
. (3.5)

This technique assigns to each advertised Web service SA the percentage of the
extent of the similarity degrees scale, i.e., maxK ρ(SK) − minK ρ(SK). We note that
other normalization techniques may also apply. The advantage of this technique is its
ability to ensure that the scores cover all the range [0,1]. In other words, the lowest
score will be equal to 0 and the highest score will be equal to 1.

Example 3.2 The normalized scores of the Web services shown in Table 3.2 are as
follows: ρ′(S1) = 0.5, ρ′(S2) = 1, ρ′(S3) = 0, ρ′(S4) = 1 and ρ′(S5) = 0.5. For example,
ρ′(S2) is computed as follows:

ρ′(S2) =
ρ(S2)−min{ρ(S1), ρ(S2,)ρ(S3)}

max{ρ(S1), ρ(S2,)ρ(S3)} −min{ρ(S1), ρ(S2,)ρ(S3)}

=
174−min{147, 174, 120}

max{147, 174, 120} −min{147, 174, 120}
= 1.⋄

3.2.2 Score computing algorithms

The computing of the normalized scores is operationalized by Algorithm 13. This
algorithm takes as a input a list mServices of Web services each is described by a
set of N similarity degrees where N is the number of attributes. The data structure
mServices used as input assumed to defined as:

(SA
i , µ(S

A
i .A1, S

R.A1), · · · , µ(SA
i .AN , SR.AN)),

48

where: SA
i is an advertised Web service, SR is the requested Web service, N the

total number of attributes and µ(SA
i .Aj , S

R.Aj) (j = 1, · · · , N) is the the similarity
measure between the requested Web service and the advertised Web service on the
jth attribute Aj . At the output, Algorithm 13 provides as an updated version of
mServices by adding to it the normalized scores of the Web services. The new version
of mServices is defined as follows:

(SA
i , µ(S

A
i .A1, S

R.A1), · · · , µ(SA
i .AN , SR.AN), ρ′(SA

i)),

where ρ′(SA
i) is the normalized score of Web service SA

i computed based on Equation
(3.5).

Algorithm 13: ComputeNormalizedScores
Input : mServices,// List of Web services.

N ,// Number of attributes.
Output: mServices,// List of Web services with normalized scores.

1 r ←− length(mServices);
2 t←− 1;
3 while (t ≤ r) do
4 row ←− the tth row in mServices;
5 s←− ComputeInitialScore(row,N, w);
6 mServices[t,N + 2]←− s;

7 a←− mServices[1, N + 2];
8 b←− mServices[1, N + 2];
9 t←− 1;

10 while (t < r) do
11 if (a > mServices[t+ 1, N + 2])) then
12 a←− mServices[t+ 1, N + 2];

13 if (b < mServices[t+ 1, N + 2])) then
14 b←− mServices[t+ 1, N + 2];

15 t←− 1;
16 while (t ≤ r) do
17 ns←− (mServices[t,N + 2]− a)/(b − a);
18 mServices[t,N + 2]←− ns;

19 return mServices;

The function ComputeInitialScore in Algorithm 13 line is given in Algorithm 14.
This function permits to compute the initial scores of Web services using Equation
(3.4). Algorithm 14 takes a list simDegrees of similarity degrees for a given Web
service and computes the initial score of this Web service based on Equation (3.4). The
list simDegrees is assumed to be defined as follows:

(SA
i , µ(S

A
i .A1, S

R.A1), · · · , µ(SA
i .AN , SR.AN)),

where SA
i , S

R, N and µ(SA
i .Aj , S

R.Aj) (j = 1, · · · , N) as defined previously. It
is easy to see that the list simDegrees is a row from the data structure mServices

introduced earlier.
The function ComputeWeight used in Algorithm 14 permits to compute the weights

based on Equations (3.1) and (3.2). This function is given in Algorithm 15.

49

Algorithm 14: ComputeInitialScore
Input : simDegrees,// List of similarity degrees.

N ,// Number of attributes.
Output: Number// Score.

1 s←− 0;
2 t←− 1;
3 while (t ≤ N) do
4 sd←− simDegrees[t+ 1];
5 switch sd do
6 case ‘Exact’
7 w ← ComputeWeight(1, N);

8 case Plug-in
9 w ← ComputeWeight(2, N);

10 case Subsumption
11 w ← ComputeWeight(3, N);

12 case Container
13 w ← ComputeWeight(4, N);

14 case Part-of
15 w ← ComputeWeight(5, N);

16 case Fail
17 w ← ComputeWeight(6, N);

18 s←− s+w;

19 return s;

Algorithm 15: ComputeWeight
Input : i, // Order of similarity degree.

N , // Number of attributes.
Output: Number// weight.

1 wc ←− 1 ;
2 if (i = 1) then
3 return wc;

4 w ←− 0 ;
5 j ←− 1 ;
6 while (j < i) do
7 w ←− (wc ×N) + 1;
8 wc ←− w;
9 j ←− j + 1;

10 return w;

3.2.3 Algorithmic complexity

Algorithm 15 runs in O(N) where N is the number of attributes. Then, the complexity
of Algorithm 14 is O(N2). The complexity of the first while in Algorithm 13 is O(rN2)
where r is the number of Web services in mServices. The complexity of the second and
third while loops in Algorithm 13 is O(r) each. Hence, the complexity of Algorithm 13
is equal to O(r(2 +N2)).

50

3.3 Score-based ranking of Web services

In this section, we present an algorithm for ranking Web services by using the scores.

3.3.1 Score-based ranking algorithm

The Web services can be ranked based on their scores computed as detailed previously.
This idea is implemented by Algorithm 16. The input of this algorithm are a list
mServices of matching Web services and the number of attributes N . The function
ComputeNormalizedScores in Algorithm 16 is given in Algorithm 13. The score-based
ranking algorithm uses a merge sort procedure (implemented by lines 3-11 in Algorithm
16) to rank the Web services based on their normalized scores.

Algorithm 16: Score-Based Ranking
Input : mServices,// List of matching Web services.

N ,// Number of attributes.
Output: mServices,// Ranked list of ranked Web services.

1 mServices ← ComputeNormalizedScores(mServices,N);
2 r ← length(mServices);
3 while (i ≤ r) do
4 Let rowi be the ith row in mServices;
5 while (j ≤ r) do
6 Let rowj be the jth row in mServices;
7 if (mServices[i,N + 2] > mServices[j,N + 2])) then
8 tmp←− rowj ;
9 rowj ←− rowi;

10 rowi ←− tmp;
11 update mServices;

12 return mServices;

Two versions can be distinguished for the definition of the list mServices, along
with the way the similarity degrees are computed. The first version of mServices is as
follows:

(SA
i , µmax(S

A
i .A1, S

R.A1), · · · , µmax(S
A
i .AN , SR.AN)),

where: SA
i is an advertised Web service, SR is the requested Web service, N the

total number of attributes and µmax(S
A
i .Aj , S

R.Aj) (j = 1, · · · , N) is the similarity
measure between the requested Web service and the advertised Web service on the jth
attribute Aj . In this case, the similarity measure is computed by selecting the edge
with the maximum weight in the matching graph (See Section 2.3).

The second version of mServices is as follows:

(SA
i , µmin(S

A
i .A1, S

R.A1), · · · , µmin(S
A
i .AN , SR.AN)),

where SA
i , S

R and N are as defined above and µmin(S
A
i .Aj , S

R.Aj) (j = 1, · · · , N)
is the similarity measure between the requested Web service and the advertised Web
service on the jth attribute Aj. In this case, the similarity measure is computed by
selecting the edge with the minimum weight in the matching graph (See Section 2.3).

51

To obtain the final rank, we need to use Algorithm 13 separately with each of these
versions and then combine the obtained rankings. However, a problem of ties may
occur since several Web services may have the same scores with both versions. This
will deteriorate the precision of the ranking algorithm. Indeed, the implementation and
testing of Algorithm 13 with the two versions of mServices show that in some cases the
version based on maximum weight outperforms the version ranking based on minimum
weight and in other cases is the inverse that happen. Table 3.3 shows the precision rate
of Algorithm 16 with the two versions of mServices and using two different data sets
from the OWL-TC.

Table 3.3: Precision of score-based ranking
Data set Version of mServices Precision rate

Government-Missile-Funding-Service Maximum weight 0.677
Minimum weight 0.819

Shoppingmall-Camera-Price-Service Maximum weight 0.339
Minimum weight 0.749

To avoid the problem of ties, we propose in Section 3.4 a more advanced ranking
algorithm which combines the scores and some preferences information to design a set
of ranking rules permitting to obtain a strict order on the Web services.

3.3.2 Algorithmic complexity

The complexity of function ComputeNormalizedScores in Algorithm 16 is O(r(2+N2))
where r is the number of Web services and N is the number of attributes (see Section
3.2.3). The length in line 2 is assumed to be a built-in function and its complexity is
not considered here. The sentences in lines 3-11 in Algorithm 16 implement a merge
sort procedure, which at best has a time complexity of O(r log r) and in worst case, it
makes O(r2). Hence, the overall complexity of Algorithm 16 in best case is O(r(2 +
N2)) +O(r log r) and in worst case is O(r(2 +N2)) +O(r2).

3.4 Rule-based ranking of Web services

The score-based ranking algorithm presented earlier may lead to the problem of ties.
To avoid this problem, we propose in this section a more advanced ranking algorithm
that combines the scores and some preferences information to obtain a strict order on
the Web services and hence avoids the ties problem.

3.4.1 Ranking rules

We design in section a series of rules that can be used sequentiality to rank the Web
services. The first rule is based on the scores of Web services while the other rules use
some user preference information extracted from the Criteria Table in order to define
a strict order on the Web services and hence avoids the problem of ties. Indeed, the

52

Criteria Table contains three types of preference information: (i) the attribute that
should be used for matching, (ii) the minimal similarity degree for each attribute, and
(iii) the order of attributes.

A first ranking rule is defined as follows:

RR1:
if ρ′(SA

i) > ρ′(SA
j) then SA

i ≻ SA
j

where SA
i and SA

j are two advertised Web service and a ≻ b means that a is bet-
ter ranked that b.

Example 3.3 The normalized scores obtained in Example 3.2 are as follows: ρ′(S1) =
0.5, ρ′(S2) = 1, ρ′(S3) = 0, ρ′(S4) = 1 and ρ′(S5) = 0.5. The application of the first
ranking rule RR1 leads to the following rank: S2 = S4 ≻ S1 = S5 ≻ S3.⋄

As shown in the this example, the first version of the ranking rule may face the problem
of ties when two different services have exactly the same score. A second version of
the ranking rule can be defined by using the difference between the desired similarities
specified in the Criteria Table and the actual similarity degrees of Web services. Let s
be a similarity degree and denote by Ord(s) the ordinal rank of s in respect to the other
predefined similarity degrees. The definition of Ord(·) function for all similarity degrees
are given in Table 3.4. Let SA be an advertised service and let (s1, · · · , sk, · · · , sN) be
its similarity degrees for attributes A1, · · · , Ak, · · · , AN ; where N is the number of at-
tributes in the Criteria Table. Then, we define the function Diff(·, ·) as follows:

Diff(SA, C) =

k=N
∑

k=1

{Ord(sk)−Ord(C.Mk)} (3.6)

Table 3.4: Ordinal rank of similarity degrees
Similarity degree s Ord(s)

Fail 1
Part-of 2
Container 3
Subsumption 4
Plug-in 5
Exact 6

A second version of ranking rule can than be defined textually as follows: use the
score-based ranking rule and if there is a tie, select the service with the largest dif-
ference between the desired similarities specified in the Criteria Table and the actual
similarity degrees of the Web services. Formally,

RR2:
if ρ′(SA

i) > ρ′(SA
j) then SA

i ≻ SA
j

else if ρ′(SA
i) = ρ′(SA

j) then

if Diff(SA
i , C) > Diff(SA

j , C) then SA
i ≻ SA

j

53

Example 3.4 The ranking obtained in Example (3.5) contains two ties. Hence, we
need to apply the second ranking rule. Assume that the similarity degrees in respect
to Input, Output and Service category attributes in the Criteria Table are equal to
Subsumes for all of the three attributes. The application of Equation (3.6) leads to
Diff(S2, C) = Diff(S4, C) = 3. Similarly, we obtain Diff(S1, C) = Diff(S5, C) =
2. Accordingly, in this particular example, the second ranking rule RR2 cannot differ-
entiate between Web services S2 and S4 nor between Web services S1 and S5.⋄

A third possible solution consists to use the order of attributes in the Criteria
Table. A new version of the ranking rule can than be defined textually as follows: use
the score-based ranking rule and if there is a tie, apply the order-based rule; if another
tie occurs, apply the lexicographic rule. Let first define the lexicographic rule. Let SA

i

and SA
j be two Web services and let (s1, · · · , sk, · · · , sN) and (s′1, · · · , s

′
k, · · · , s

′
N) be

their similarity degrees for attributes A1, · · · , Ak, · · · , AN , where N is the number of
attributes. Then, the lexicographic rule is defined as follows:

LexC(S
A
i) > LexC(S

A
j)⇔ (∃l)(∀r < l)(sr = s′r) ∧ (sl > s′l) (3.7)

The third version of the ranking rule can than be formally defined as follows:

RR3:
if ρ′(SA

i) > ρ′(SA
j) then SA

i ≻ SA
j

else if ρ′(SA
i) = ρ′(SA

j) then

if Diff(SA
i , C) > Diff(SA

j , C) then SA
i ≻ SA

j

else if Diff(SA
i , C) = Diff(SA

j , C) then

if LexC(S
A
i) > LexC(S

A
j) then SA

i ≻ SA
j

Example 3.5 We should now apply the third ranking rule RR3 to differentiate be-
tween Web services S2 and S4 and Web services S1 and S5. Consider first Web services
S2 and S4. We should compare successively S2 and S4 on attributes Input, Output and
Service category and stop when one of the Web services ranks the other. In respect
to Input, we have LexC(S2) = LexC(S4) since both Web services have a similarity de-
gree (which is equal to Plug-in). In respect to Output, we have LexC(S2)=Exact and
LexC(S4) =Subsume which means S2 ≻ S4. The same process leads to S1 ≻ S5 on the
first attribute. Consequently, the final ranking is as follows: S2 ≻ S4 ≻ S1 ≻ S5 ≻ S3.⋄

In the previous example, all the ties problems have been resolved. In practice,
however, the problem of ties may occur even with third version of the ranking rule.
This holds when two or more Web services have the same similarity degrees on all
the attributes. To solve this problem, we propose a fourth version of the ranking rule
which is stated textually as follows: use the score-based ranking rule and if there is a
tie, apply the order-based rule; if another tie occurs, apply the lexicographic rule; and
if a further tie occurs, select the first service. Formally,

54

RR4:
if ρ′(SA

i) > ρ′(SA
j) then SA

i ≻ SA
j

else if ρ′(SA
i) = ρ′(SA

j) then

if Diff(SA
i , C) > Diff(SA

j , C) then SA
i ≻ SA

j

else if Diff(SA
i , C) = Diff(SA

j , C) then

if LexC(S
A
i) > LexC(S

A
j) then SA

i ≻ SA
j

else if LexC(S
A
j) = LexC(S

A
i) then

else Select the first service

In the second and third rules, we assumed that the Criteria Table is used, which
means that the Web services in input have been identified using the fully parameter-
ized matching algorithm given in Section 2.4.3. However, these rules can also be applied
when the Web services in the input have been identified with the partially parameter-
ized matching algorithm (see Section 2.4.2) or even the trivial matching algorithm (see
Section 2.4.1). In the first case, we need simply to transform the Criteria List into a
Criteria Table by adding a new column and by setting the minimal similarly degrees
to Fail for all the attributes. In the second case, we need simply to define a Criteria
Table containing all attributes and by setting the minimal similarly degrees to Fail for
all of these attributes.

3.4.2 Rule-based ranking algorithm

The rule-based ranking approach is operationalized through Algorithm 17. This algo-
rithm uses the idea of comparison-based sorting to rank the Web services. Function RR4

in Algorithm 17 corresponds to the fourth ranking rule introduced earlier. The function
ComputeNormalizedScores in Algorithm 17 is given in Algorithm 13. It permits to
compute the normalized scores, as explained previously.

The main input for this algorithm is list mServices which, as previously, can take
one of the following forms:

(SA
i , µmax(S

A
i .A1, S

R.A1), · · · , µmax(S
A
i .AN , SR.AN)),

or

(SA
i , µmin(S

A
i .A1, S

R.A1), · · · , µmin(S
A
i .AN , SR.AN)),

where SA
i , S

R, N , µmax(S
A
i .Aj , S

R.Aj) (j = 1, · · · , N) and N µmin(S
A
i .Aj , S

R.Aj)
(j = 1, · · · , N) are as defined in Section 3.3.1

The output of Algorithm 17 is an ordered list mServices of matching Web services.
The rule-based ranking algorithm uses a merge sort procedure (implemented by

lines 3-11 in Algorithm 17) to rank the Web services based rule RR4. It is easy to see
that the score-based and rule-based ranking algorithms differ only at the level of the
IF-THEN test in line 7. In the score-based ranking algorithm, this test relies on the
normalized scores while with the rule-based ranking algorithm the test is based on the
ranking rule RR4. It is also easy to see that the use of ranking rule RR1 in Algorithm
17 will lead exactly to the same result as with the score-based algorithm.

55

Algorithm 17: Rule-Based Ranking
Input : mServices,// List of matching Web services.

C,// Criteria Table.
Output: mServices,// Ranked list of ranked Web services.

1 mServices ← ComputeNormalizedScores(mServices,C.N);
2 r ←− length(mServices);
3 while (i ≤ r) do
4 while (j ≤ r) do
5 rowi ←− row i in mServices ;
6 rowj ←− row j in mServices ;
7 if (RR4(rowi[1], rowj [1], C)) then
8 tmp←− rowj ;
9 rowj ←− rowi;

10 rowi ←− tmp;
11 update mServices;

12 return mServices;

Algorithm 18: RR4

Input : SA
i , // Web service.

SA
j , // Web service.

C,// Criteria Table.
Output: Boolean//true: SA

i rank better than SA
j ; false: otherwise.

1 if
(

ρ′(SA
i) > ρ′(SA

j)
)

then

2 return success;

3 else if
(

ρ′(SA
i) = ρ′(SA

j)
)

then

4 if
(

Diff(SA
i , C) > Diff(SA

j , C)
)

then

5 return success;

6 else if
(

LexC(SA
i) > LexC(SA

j)
)

then

7 return success;

8 return false;

3.4.3 Algorithmic complexity

The complexity of function ComputeNormalizedScores in Algorithm 17 is O(r(2+N2))
where r is the number of Web services and N is the number of attributes (see Section
3.2.3). The length in line 2 is assumed to be a built-in function and its complexity is
not considered here. The complexity of function RR4 in Algorithm 17 is equal to O(2N)
at worst. The sentences in lines 3-11 in Algorithm 16 implement a merge sort procedure,
which at best has a time complexity of O(r log r) and in worst case, it makes O(r2).
Hence, the overall complexity of Algorithm 17 in best case is O(r(2+N2))+O(2Nr log r)
and in worst case is O(r(2 +N2)) +O(2Nr2).

3.5 Tree-based ranking of Web services

In this section, we propose a new algorithm for Web services ranking using a tree
data structure. First, we present the basic idea of the tree-based ranking algorithm

56

in Section 3.5.1. Then, we propose the tree construction algorithm in Section 3.5.2.
Then, we detail in Section 3.5.3 the tree-based ranking algorithm. Finally, we study
the complexity of proposed ranking algorithm in Section. 3.5.4.

3.5.1 Principle

The basic idea of the tree-based ranking algorithm is to use jointly the trivial ranking
algorithms based on max(wi) and min(wi) criteria. For computational performances,
the proposed algorithm will rely on a four-level tree T data structure. The construction
of the tree T where the root contains the initial list of Web and the leafs are individual
Web services. The final ranking is obtained by identification the leafs from the left to
the right. Figure 3.1 provides an example of tree constructed based on this idea.

Figure 3.1: Tree structure

In what follows, we assume that the initial list of Web services mServices is defined
as follows:

(SA
i , µmax(SA

i .A1, SR.A1), · · · , µmax(SA
i .AN , SR.AN), µmin(S

A
i .A1, SR.A1), · · · , µmin(S

A
i .AN , SR.AN)),

where: SA
i is an advertised Web service, SR is the requested Web service, N the

total number of attributes and

• µmax(S
A
i .Aj , S

R.Aj) (j = 1, · · · , N) is the similarity measure between the re-
quested Web service and the advertised Web service on the jth attribute Aj

computed by selecting the edge with the maximum weight in the matching
graph (See Section 2.3); and

• µmin(S
A
i .Aj , S

R.Aj) (j = 1, · · · , N) is the similarity measure between the re-
quested Web service and the advertised Web service on the jth attribute Aj

computed by selecting the edge with the minimum weight in the matching
graph (See Section 2.3).

The tree-based ranking algorithm given later in Section 3.5.3 is composed of two
main phases. The objective of the first phase is to construct a tree T as described
earlier. The objective of the second phase is to identify the final ranking. The first
phase is detailed in the next section.

3.5.2 Tree construction

The construction of the tree requires the use of some appropriate functions to split the
nodes of each level. Before detailing the tree construction algorithm, we introduce the
nodes splitting functions.

57

3.5.2.1 Node splitting functions

The construction of the tree T requires the use of some functions for splitting the nodes.
The first node splitting function is formalized in Algorithm 19. This function receives
in entry one node with a list of Web services and generates a ranked list of nodes each
with one or more Web services. The function SortScoresMax and SortScoresMin in
Algorithm 19 permit to sort Web services based either on the maximum edge value
or the minimum edge value, respectively. Function Split permits to split the Web
services in L0 into a set of sublists, each with a subset of services having the same
score. The instructions in lines 8-11 in Algorithm 19 permits to create a node for each
sublist in Sublists. The algorithm outputs a list T of nodes ordered according to the
scores of Web services in each node from the left to the right.

Algorithm 19: Node splitting
Input : Node,// A node.

NodeSplittingType,// Node splitting type.
Output: L,// List of ranked nodes.

1 L← ∅;
2 L0 ← Node.mServices;
3 if (NodeSplittingType = ′Max′) then
4 L0 ← SortScoresMax(L0);

5 else
6 L0 ← SortScoresMin(L0);

7 SubLists ← Split(L0);
8 for (for each elem in SubLists) do
9 create node n;

10 n.add(elem);
11 L.add(n);

12 return L;

The first node splitting function is formalized in Algorithm 20. This functions
permits to split randomly a node into a set of nodes, each with one Web service.

Algorithm 20: Random Node Splitting
Input : Node,// A node.
Output: L,// List of ranked nodes.

1 L← ∅;
2 L0 ← Node.mServices;
3 for each elem in L0 do
4 create node n ;
5 n.add(elem);
6 L.add(n);

7 return L;

3.5.2.2 Tree construction algorithm

The construction process starts by initializing the root nodes with the initial list of Web
services. Then, the root node is split into a set of nodes, each contains a set of Web
services having the same value. The nodes that contains more then one Web services

58

are split as previously. The process is repeated until all the leaf nodes contain only one
Web service.

The tree construction process contains four steps:

- Step 0. Construction of Level 0 : In this initialization step, we create a root node
r containing the list of Web services to rank. At this level, the tree T contains
only the root node.
Step 1. Construction of Level 1 : Here, we split the root node into a set of nodes
by using the node splitting in Algorithm 19 with the desired sorting type (i.e.
based either on the maximum edge value or the minimum edge value). At the
end of this step, a new level is added to the tree T . The nodes of this level are
ordered from left to right. Each node of this level will contain one or several Web
services. The Web services of a given node will have the same score.

-- Step 2. Construction of Level 2 : Here, we split the nodes of the previous level
that have more than one Web services using by using the node splitting in Algo-
rithm 19 with a different sorting type than the previous step. At the end of this
step, a new level is added to the tree T . The nodes of this level are ordered from
left to right. Each node of this level will contain one or several Web services. The
Web services of a given node will have the same score.

- Step 3. Construction of Level 3 : Here, we apply the random splitting function
given in Algorithm 20 to randomly split the nodes of the previous level that has
more one Web service. At the end of this step, a new level is added to the tree
T . All the nodes of this level contains only one Web service.

Depending on the order the node slipping types are used, we may distinguish two
version for the tree construction. The first version, which is shown in Algorithm 21,
uses the node splitting based on the Max to generate the nodes of the second level and
then the node splitting based on the Min to generate the nodes of the third level. The
second version, shown in Algorithm 22, uses an opposite order.

59

Algorithm 21: Tree Construction—Version Max-Min
Input : L,// Initial list of Web services.
Output: T ,// Tree.

1 create node Node;
2 Node.add(L);
3 add Node as root of the tree T ;
4 FirstLevelNodes ← NodeSplitting(Node,′ Max′);
5 for each node n1 in FirstLevelNodes do
6 add n1 as a child of the root;
7 if n1 is not a leaf then
8 SecondLevelNodes ← NodeSplitting(Node,′ Min′);
9 for each node n2 in SecondLevelNodes do

10 add n2 as a child of n1;
11 if n2 is not a leaf then
12 ThirdLevelNodes ← RandomNodeSplitting(n2);
13 for each node n3 in ThirdLevelNodes do
14 add n3 as a child of n2;

15 return T ;

Algorithm 22: Tree Construction—Version Min-Max
Input : L,// Initial list of Web services.
Output: T ,// Tree.

1 create node Node;
2 Node.add(L);
3 add Node as root of the tree T ;
4 FirstLevelNodes ← NodeSplitting(Node,′ Min′);
5 for each node n1 in FirstLevelNodes do
6 add n1 as a child of the root;
7 if n1 is not a leaf then
8 SecondLevelNodes ← NodeSplitting(Node,′ Max′);
9 for each node n2 in SecondLevelNodes do

10 add n2 as a child of n1;
11 if n2 is not a leaf then
12 ThirdLevelNodes ← RandomNodeSplitting(n2);
13 for each node n3 in ThirdLevelNodes do
14 add n3 as a child of n2;

15 return T ;

The construction process is illustrated graphically in Figure 3.2. For simplicity, the
initial Web services list (in the root node) contains 8 Web services each with two scores.

60

Figure 3.2: Illustration of tree construction process

3.5.3 Tree-based ranking algorithm

We propose here a new algorithm for implementing the solution proposed in Section
3.5.1. The idea of the algorithm is to construct first a tree T using one of the algorithms
discussed in the previous section and then scanning through this tree in order identify
the final ranking. The identification of the best and final ranking needs to apply a tree
traversal (also known as tree search) on the tree T . The tree traversal refers to the
process of visiting each node in a tree data structure, exactly once, in a systematic way.
Different types of traversals are possible: pre-order, in-order and post-order. They differ
by the order in which the nodes are visited. In this report, we will use the pre-order
type.

The idea discussed in the previous paragraph is implemented by Algorithm 23. The
main input for this algorithm is the initial list mServices of Web services. This list
is assumed to have the same structure as indicated in Section 3.5.1. The output of
Algorithm 23 is a list FinalRanking of ranked Web services.

The functions ComputeNormalizedScoresMax and ComputeNormalizedScoresMin

are not given in this report. They are similar to function ComputeNormalizedScores in-
troduced previously in Algorithm 17. The scores in function ComputeNormalizedScoresMax
are computed by selecting the edge with the maximum weight in the matching graph
while the scores in function ComputeNormalizedScoresMin are computed by selecting
the edge with the minimum weight in the matching graph (See Section 2.3).

Algorithm 23 can be organized into two phases. The first phase concerns the
construction of the tree T . This phase is implemented by the instructions in lines

61

1-7. According to the type of nodes splitting order (Max-Min or Min-Max), Algo-
rithm 23 uses either function ConstructTreeMaxMin (for Max-Min order) or function
ConstructTreeMinMax (for Min-Max order) to construe the tree. These functions are
implemented by Algorithms 21 and 22, respectively.

Algorithm 23: Tree-Based Ranking
Input : mServices,// List of matching Web services.

N ,// Number of attributes.
SplittingOrder, // Nodes splitting order.

Output: FinalRanking,// Ranked list of Web services.
1 T ← ∅;
2 mServicesComputeNormalizedScoresMax(mServices,N);
3 mServicesComputeNormalizedScoresMin(mServices,N);
4 if (SplittingOrder = ′MaxMin′) then
5 T ← ConstructTreeMaxMin(mServices);

6 else
7 T ← ConstructTreeMinMax(mServices)

8 FinalRanking ← TreeTraversal(T);
9 return FinalRanking;

The second phase of Algorithm 23 concerns the identification of the best and final
ranking by applying a pre-order tree traversal on the tree T . The pre-order tree traversal
contains three main steps:

1. examine the root element (or current element);

2. traverse the left subtree by recursively calling the pre-order function;

3. traverse the right subtree by recursively calling the pre-order function.

The pre-order tree traversal is implemented by Algorithm 24. This algorithm takes
in input a tree T and generated the final ranking list L. Algorithm 24 scans the tree T

and picks out all leaf nodes of T ordered from the left to the right.

Algorithm 24: Tree Traversal
Input : T ,// Tree.
Output: L,//Final ranking.

1 L← ∅;
2 CurrNode ← T.R;
3 Traverse (CurrNode,L)is
4 if CurrNode contains a single Web service then
5 Let currService be the single Web service in CurrNode;
6 L.Append(currService);

7 for each child f of CurrNode do
8 Traverse (f ,CurrNode);

9 return L;

Figure 3.3 illustrates graphically the pre-order tree traversal. The numbers in this
figure indicate the order of nodes examining. The final ranking is given by the leaf
nodes in Figure 3.3 ordered from left to right, i.e., 4→5→6→7→8.

62

Figure 3.3: Illustration of tree traversal algorithm

3.5.4 Algorithmic complexity

In this section, we design by:

• r: the total number of Web services;

• rn: the number of Web services in a given node n;

• klinj
the number of services of the node nj of the level li of the tree. ;

• Tn: the total number of nodes in the tree T ;

• Lnj
: the number of nodes in the jth level of the tree T .

Node splitting algorithms Let focus on Algorithms 19 and 20 of node splitting.

• Algorithm 19: The most expensive operation in Algorithm 19 is the sorting pro-
cedure (lines 4 or 6). In this algorithm, we assumed that a merge-sort procedure
is in use, which makes the time complexity of Algorithm 19 is approximately
O(rn log rn).

• Algorithm 20: The single loop in Algorithm 20 iterates over the Web services in
the node received as in input. Consequently, the time complexity of Algorithm
20 is O(rn).

Tree construction algorithms Algorithms 21 and 22 have the same complexity. In
order to compute it, we chose to consider each line apart. The algorithm contains three
embedded loop and the number of iteration of the these loops can take any value, so
considering the algorithms in a holistic way and discussing the complexity of each line
was the most simple approach to take.

• Lines 1, 2 and 3 contains constant operations.

63

• Line 4 corresponds to the function NodeSplitting, which is implemented through
Algorithm 19. The time complexity of this Algorithm is O(rn log rn). Since at
this level rn is equal to the total number of Web services, the complexity of the
instruction in line 4 is equal to O(r log r).

• The first for Loop that we denote by fl spans form line 5 to 15. Operations
within fl are repeated Ln1 times. Within fl :

– Lines 5 to 7 contains constant operations, hence their time complexity is
O(Ln1).

– Line 8 corresponds to the function NodeSplitting, which is implemented

through Algorithm 19. The time complexity of this Algorithm isO(
∑i=Ln1

i=1 kl1ni

log kl1ni
);

– The second embedded loop el1 that spans from line 9 to 14, is repeated Ln2

times and within el1:

∗ Lines 9 to 11 contains constant operations, hence have a time complexity
O(Ln2).

∗ Line 12 corresponds function RandomSplitting, which is implemented

by Algorithm 20. This function has complexity of O(
∑i=Ln2

i=1 kl2ni
);

∗ The last embedded loop el2 spans from line 13 to 14 and contains con-
stant operations which are repeated Ln3 times. Hence, its time com-
plexity is O(Ln3)

The total time complexity is consequently O(r log r+Ln1+
∑Ln1

i=1 k
l1
ni
log kl1ni

+Ln2+
∑Ln2

i=1 kl2ni
+ Ln3).

Nodes in the tree can be assimilated to a bag of services. At each phase of the tree
construction, a traversal of the tree boundaries from left to right as illustrated in Figure
3.4 with a sequential record of services within the nodes, would produce a ranked list
of services and exactly r services. This characteristic of the tree guarantees that the
number of nodes and the total number of services at each level of the tree would never
exceed r, hence we have the following equations:

Ln1 ≤ r (3.8)

Ln1
∑

i=1

kl1ni
≤ r (3.9)

Ln2 ≤ r (3.10)

Ln2
∑

i=1

kl2ni
≤ r (3.11)

Ln3 ≤ r (3.12)

64

(a) Traversal of the
tree boundaries
after Phase 1 of the
tree construction

(b) Traversal of the
tree boundaries af-
ter Phase 2 of the
tree construction

(c) Traversal of the tree
boundaries after Phase 3
of the tree construction

Figure 3.4: Traversal of the tree boundaries after each phase of the tree construction

We approximate that kl1n1
= kl1n2

= cdots = kl1ni
= cdots = kl1nLn1

= kl1 . In other

words, the nodes of the first level will contain the same number of services. Conse-

quently and according to equation 3.9 we have kl1 .Ln1 ≤ r. Hence,
∑Ln1

i=1 k
l1
ni
log kl1ni

≤
r log r

Ln1
, consequently we have equation 3.13:

Ln1
∑

i=1

kl1ni
log kl1ni

≤ r log r (3.13)

From equations 3.8, 3.9, 3.10, 3.11, 3.12 and 3.13 we conclude that the time com-
plexity of the tree construction algorithm is O(r log r).

65

Tree-based ranking and tree traversal algorithms Let focus on Algorithms 23
and 24 of tree-based ranking and tree traversal, respectively.

• Algorithm 23: Functions ComputeNormalizedScoresMax and ComputeNormalized-
ScoresMin in Algorithm 23 are similar to function ComputeNormalizedScores.
The latter is implemented by Algorithm 17 with a time complexity of O(r(2+N2))
(see Section 3.2.3). Functions ConstructTreeMinMax and ConstructTreeMinMax

are given in Algorithms 21 and 22, respectively. As shown earlier, these algorithms
have a complexity of O(r log r). Function TreeTraversal is implemented by Al-
gorithm 24 which has a complexity of O(r), as discussed in the next item. Finally,
Algorithm 23 has a time complexity of O(r log r).

• Algorithm 24: The tree traversal algorithm has a complexity of O(Tn) where Tn

is the total number of nodes in the tree T . Based on Equations (3.8), (3.10) and
(3.12), we conclude that Tn < 3r. Hence, the time complexity of Algorithm 24 is
O(r).

3.6 Comparative study

In this section, we briefly compare the proposed algorithm to some existing ones in
respect to several characteristics. The characteristics concerns:

1. Use of external information to the Web service description;

2. Use of the available information in the Web service description;

3. Use of the user preferences;

Table 3.5 summaries the characteristics of the proposed approaches and some ex-
isting ones (namely, [6][44][58][58][74][75]).

Table 3.5: Comparison of ranking approaches
Approach Use of external Use of Web service Use of user

information description information preferences
Beck and Freitag [6] × ×
Kokash et al. [44] × ×
Manoharan et al. [58] ×
Segev and Toch [74] × ×
Skoutas et al. [75] ×
Score-based ranking (Algorithm 16) ×
Rule-based ranking (Algorithm 17) × ×
Tree-based ranking (Algorithm 23) ×

3.7 Conclusion

In this chapter, we first presented a technique for computing Web services scores. The
prossed technique permits to transform the similarity measures, which are defined on

66

an ordinal scale, into numerical values. Then, we detailed three Web services ranking
approaches: score-based, rule-based and tree-based approaches. We presented a series
of algorithms are proposed for these different ranking approaches.

In the next chapter, we present the developed prototype and then evaluate the
performances of the proposed matching and ranking algorithms.

67

Chapter 4

Implementation and Performance
Evaluation

We implemented a prototype called PMRF (Parameterized Matching-
Ranking Framework). This chapter first presents the architecture of the
developed system and discusses some implementation issues. Then, it
provides the results of performance evaluation of the PMRF. It also com-
pares PMRF to two exiting frameworks, namely iSeM-logic-based and
SPARQLent. The different matching and ranking algorithms have been
implemented and evaluated using the OWLS-TC4 datasets. The evalu-
ation has been conducted employing the SME2 (Semantic Matchmaker
Evaluation Environment) tool. The results show that the algorithms be-
have globally well in comparison to iSeM-logic-based and SPARQLent.

4.1 Introduction

In the second and third chapters, we unproduced a series of algorithms for matching and
ranking Web services. We implemented a highly configurable framework called PMRF
(Parameterized Matching-Ranking Framework) supporting the different proposed al-
gorithms. We compared the performance of these algorithms by testing seven different
configurations. We also compared the proposed framework to two well-known match-
makers, namely iSeM-logic-based [43] and SPARQLent [72][73]. The SME2 (Semantic
Matchmaker Evaluation Environment) has been used to evaluate the performance of
different algorithms. The SME2 is an open source tool for testing different semantic
matchmakers in a consistent way.

The rest of the chapter is organized as follows. Section 4.2 presents the architecture
of PMRF and some implementation issues. Section 4.3 introduces the performance
evaluation framework and metrics. Section 4.4 provides the analysis of performance
evaluation. Section 4.5 discusses the effect of the edge criteria order on the tree-
based ranking algorithm. Section 4.6 compares the PMRF to other similar frameworks.
Section 4.7 concludes the chapter

68

4.2 System architecture and implementation

In this section, we first present the conceptual (Section 4.2.1) and the functional (Sec-
tion 4.2.2) architectures of the PMRF. Then, we discuss some implementation issues
(Section 4.2.3).

4.2.1 System design and conceptual architecture

Figure 4.1 provides the conceptual architecture of the PMRF. The inputs of the system
are: the Criteria Table/List, the published Web services repository, the user request
and its corresponding Ontologies. The weights of similarity degrees and order functions
are computed by the PMRF. The output of the PMRF is a ranked list of Web services.

The PMRF is composed of two layers. The role of the first layer is to parse the
input data and parameters and then transfer it to the second layer, which represents
the matching and ranking engine. The Matching Module filters Web service offers
that match with the Criteria Table/List. The result is then passed to the Ranking
Module. This module produces a ranked list of Web services. The assembler guarantees
a coherent interaction between the different modules in the second layer.

The three main components of the second layer of PMRF are:

• Matching Module: This component contains the different matching algorithms
introduced in Section 2.4:

– Trivial matching algorithm (Section (Section 2.4.1),

– Partially parameterized matching algorithm (Section 2.4.2),

– Fully parameterized matching algorithm(Section 2.4.3).

• Similarity Computing Module: This component supports the different simi-
larity measure computing approaches introduced in Section 2.3, and which are:

– Efficient similarity with MinEdge (Section 2.3.3),

– Accurate similarity with MinEdg (Section 2.3.4),

– Accurate similarity with MaxEdge 2.3.4),

– Accurate similarity with MaxMinEdge 2.3.4).

• Ranking Module: This component is the repository of the score computing
technique and the different ranking algorithms proposed in the third chapter. It
contains the following elements:

– Score computing technique (Section 3.2),

– Score-based ranking algorithm (Section 3.3),

– Rule-based ranking algorithm (Section 3.4),

– Tree-based ranking algorithm (Section 3.5).

69

I n s t a n c e s

Matching Module

Tri vial Matching E!cient MinEdge

Accurate MinEdge

Accurate MaxMinEdge

Accurate MaxEdge

Score Computing Technique

Score-Based Ranking

Tree-Based Ranking

Rule-Based Ranking

Partially Parametrized Matching

Fully Parametrized Matching

Similarity Computing Module

Ranking Module

A s s e m b l e r

 Matching Module

instances

Similarity computing

module Instances

 Ranking Module

Instances

Criteria Table Parser

Service Pro"le Parser

User

Con"guration

Parser

Service

Registry

criteria

Table/List

User

Con"gu-

ration

Ranked

List of

Services

Couche 1

Couche 2

Figure 4.1: Conceptual architecture of the PMRF

70

4.2.2 Functional architecture

The functional architecture of the PMRF is given in Figure 4.2. It shows graphically
the different steps from receiving the user query (query and the different parameters)
until the delivery of the final results (ranked list of Web services matching the query)
to the user. We can distinguish the following main operations:

• The PMRF receives (1) the user query including the desired Web services and
the required parameters;

• The Matching Module scans (2) the Registry in order to identify the Web services
matching the user query;

• During the matching process, the Matching Module uses (3) the Similarity Com-
puting Module to calculate the similarity degrees;

• The Matching Module delivers (4) the Web services matching the user query;

• The Ranking Module receives (5) the matching Web services and processes them
for ranking;

• During the ranking operation, the Ranking Module uses (6) the Scoring Module
to compute the scores of the Web services;

• The Ranking Module delivers (7) a ranked list of Web services;

• The PMRF delivers (8) the ranked list of Web services to the user.

Figure 4.2: Functional architecture of the PMRF

71

4.2.3 Implementation

To develop the PMRF, we have used the following tools:

• OWLS-API (http://on.cs.unibas.ch/owls-api/) to parse the OWLS service
descriptions;

• OWL-API (http://owlapi.sourceforge.net/) and the Pellet-reasoner (http:
//clarkparsia.com/pellet/) to perform the inference for computing the simi-
larity measure;

• Eclipse IDE (http://eclipse.org/ide/ as a developing tool.

The inference is one of the main issues encountered during the developing of the
PMRF. We perform the following procedure in order to minimize resources consump-
tion, especially memory:

1. A local ontology is created at the start of the matchmaking process. The incre-
mental classifier class, taken from the Pellet reasoner library, is associated to this
ontology.

2. The service parser based on the OWLs-API retrieves the URI of the attributes
values of each service. The concepts related to these URIs are added incrementally
to the local ontology and the classifier is updated accordingly.

3. In order to infer the semantic relations between concepts, the similarity measure
module uses the knowledge base constructed by the incremental classifier.

Figure 4.3 an extract from the Matching Class. In this figure, we can see the
input and output functions. The latter contains the call for the matching and ranking
operations.

4.3 Performance evaluation framework and metrics

In this section, we introduce the performance evaluation framework (Section 4.3.1),
specify the test collection used (Section 4.3.2) and the different evaluation metrics
(Section 4.3.3).

4.3.1 Evaluation framework

To evaluate the performance of the PMRF, we used the Semantic Matchmaker Eval-
uation Environment (SME2). The SME21 is an open source tool for testing different
semantic matchmakers in a consistent way. The SME2 uses OWLS-TC collections to
provide the matchmakers with Web service descriptions, and to compare their answers
to the relevance sets of the various queries.

1See here: http://projects.semwebcentral.org/projects/sme2/.

72

...

Figure 4.3: Extract from class Matching

A series of experimentations have been conducted on a Dell Inspiron 15 3735 Laptop
with an Intel Core I5 processor (1.6 GHz) and 2 GB of memory.The result of these
experimentations will be discussed later in Section 4.4.

4.3.2 Test collection

The test collection used is OWLS-TC4, which consists of 1083 Web service offers de-
scribed in OWL-S 1.1 and 42 queries. For illustration, we provide in Figure 4.4 an
Ontology example, concerning health insurance, which has been used for the experi-
mentations.

73

Figure 4.4: Ontology example about Health Insurance

4.3.3 Evaluation metrics

The SME2 provides several metrics to evaluate the performance and effectiveness of a
Web service matchmaker. The metrics that have been considered in this chapter are:
precision and recall (Section 4.3.3.1), average precision (Section 4.3.3.2), query response
time (Section 4.3.3.3) and memory consumption (Section 4.3.3.4). The definition of
these metrics are given in the rest of this section. They have reproduced from [40][49].

4.3.3.1 Precision and Recall

These are standard measures for evaluating the performance of information Retrieval
systems. Given a query q, and a set of items D, let Rq be the relevance set of q (i.e,
the set of relevant items for the query q), and let Aq be the computed answer set (i.e.,
a set of items returned as answer to q). Then, the Precision and Recall are defined as
follows:

Pecision =
|Rq

⋂

Aq|

|Aq|
(4.1)

Recall =
|Rq

⋂

Aq|

Rq
(4.2)

Precision can then be measured as a function of Recall by scanning the output
ranking from the top to the bottom and observing the Precision at different Recall
levels.

74

4.3.3.2 Average Precision

If the performance of a system needs to be captured in a single measure, the common
one is Average Precision over relevant items. The Average precision is the average of
precisions computed at each point of the relevant documents is the returned ranked
list. It is calculated as follows:

AvePrecision =
∑

R∈RS

1

|RelR|

|LR|
∑

r=1

isrel(r)
count(r)

r
(4.3)

where LR is a ranked list of Web services retrieved from the request R,

count(r) =

r
∑

i=1

isrel(i), (4.4)

and

isrel(r) =

{

1, if service in LR at rank r is relevant,
0, otherwise.

(4.5)

4.3.3.3 Query Response Time

This metric measures the the time required by the matchmaker to answer a single
query. This metric does not take into account the time spent in the initialization phase
for parsing Web service descriptions.

4.3.3.4 Memory Usage

This metric measures the about the memory usage during the total execution time.

4.4 Performance evaluation analysis

In order to study the performance of each instance of the modules supported by the
PMRF and describe the difference between them, we implemented seven plugins to be
used with the SME2 tool. Each of these plugins represents a different combination
of the matching, similarity computing and ranking algorithms. The characteristics of
these plugins are summarized in Table 4.1.

Table 4.1: Description of the evaluated configurations
Configuration Similarity measure instance Matching instance Ranking instance
Configuration 1 Accurate MinEdge Trivial Matching Trivial Ranking
Configuration 2 Efficient MinEdge Trivial Matching Trivial Ranking
Configuration 3 Accurate MaxEdge Trivial Matching Trivial Ranking
Configuration 4 Accurate MinEdge Fully Parameterized Matching Trivial Ranking
Configuration 5 Accurate MaxMinEdge Trivial Matching RankMinMax
Configuration 6 Accurate MinEdge Trivial Matching Rule Based Ranking
Configuration 7 Efficient MinEdge Trivial Matching Rule Based Ranking

75

4.4.1 Comparison of configurations 1 and 2

The evaluation of configurations 1 and 2 yields to the results shown in Figures 4.5-
4.7. The difference between the two configurations is the similarity measure module
instance. Indeed, the first configuration employs the Accurate MinEdge instance
while the second employs the Efficient MinEdge instance.

Figure 4.5 shows the average precision and figure 4.6 illustrates the recall/precision
plot. We can see that configuration 1 outperforms configuration 2 for these two met-
rics, this is due to the use of logical inference, that obviously enhances the precision of
the first configuration. In Figure 4.7, however, configuration 2 is shown to be remark-
ably faster than configuration 1. This is due to the inference process that consumes
considerable resources.

The goal to offer a configurable, i.e., flexible, solution is fulfilled since the user can
choose, according to his/her needs, a different similarity measure computing versions.
In critical situations, the efficient version is preferable over the accurate one. However,
if the user seeks for more precision, the accurate version is the best choice.

Figure 4.5: Configuration 1 vs Configuration 2: Average precision

76

Figure 4.6: Configuration 1 vs Configuration 2: Recall/Precision

Figure 4.7: Configuration 1 vs Configuration 2: Query response time

77

4.4.2 Comparison of configurations 1 and 4

The results of comparison of configuration 1 and 4 are shown in Figures 4.8 and 4.9.
The difference between these two configurations is the matching module instance. The
first configuration is based on the trivial matching algorithm while the second uses the
fully parameterized matching. Figure 4.8 shows the Recall/Precision metric results. It
is easy to see that configuration 4 outperforms configuration 1. This is due to the fact
that the Criteria Table restricts the results to the most relevant Web services, which will
have the best ranking leading to a high Recall/Precision value. Figure 4.9 illustrates
Recall/Precision plot. It shows that configuration 4 has a low recall rate. The overly
restrictive Criteria Table explains these results, since it fails to return some relevant
services. The user can choose which configuration fits his/her needs: a restrictive yet
accurate Criteria Table or a loose matching returning the whole set of Web services.

Figure 4.8: Configuration 1 vs Configuration 4: R-Precision

4.4.3 Comparison of configurations 5 and 6

Figures 4.10-4.11 show the evaluation results of configurations 5 and 6. The difference
between these two configurations is the ranking module instance. The first uses the tree-
based ranking algorithm while the second employs the rule-based ranking algorithm.
Figure 4.10 shows that configuration 5 has a slightly better average precision than
configuration 6. Figure 4.11 shows also that configuration 6 is obviously faster than
configuration 5.

78

Figure 4.9: Configuration 1 vs Configuration 4: Recall/Precision

Figure 4.10: Configuration 5 vs Configuration 6: Average precision

79

Figure 4.11: Configuration 5 vs Configuration 6: Query response time

4.5 Edge criteria order effect on the tree-based ranking

The tree-based ranking algorithm as clarified in Chapter 3 uses two criteria for the
ranking. The first criteria cmin considers the MinEdge and the second cmax considers
the MaxEdge. These two criteria are used sequentially during the construction of the
tree and theoretically any order of their use is permitted. However, our experiments,
over the OWL-TC test collection, showed that this order can affect the accuracy of the
results. In detail, we implemented two algorithms each employing a different order of
cmax and cmin as given in Table 4.2. We evaluated these two algorithms and measured
the Average Precision and the Recall/Precision metrics.

Table 4.2: Order of the criteria considered
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤❤

Algorithms
Order

First criteria Second criteria

RankMinMax cmin cmax

RankMaxMin cmax cmin

The result of the comparison of the two situations are shown in Figures 4.12
and 4.13. According to these figures, we conclude that RankMinMax outperforms
RankMaxMin. However, this final constatation should not be taken as a rule since it
might depend on the considered test collection.

80

Figure 4.12: Effect of the criteria order: Average precision

Figure 4.13: Effect of the criteria order: Recall/precision

81

4.6 Comparative study

We compared the results of the PMRF matchmaker with SPARQLent approach [72][73]
and iSeM approach [43]. Configuration 7 was chosen to perform this evaluation. The
SPARQLent is a logic-based matchmaker based on the OWL-DL reasoner Pellet (http:
//pellet.owldl.com/) to provide exact and relaxed service matchmaking. The iSeM
is an hybrid matchmaker offering different filter matchings: logic-based, approximate
reasoning based on logical concept abduction for matching Inputs and Outputs. We
consider only the I-O logic-based matching for the comparison issue. We note that
SPARQLent and iSeM consider preconditions and effects of Web services, which is not
considered in our work.

4.6.1 Recall/Precision

Figure 4.14 presents the recall/precision of PMRF, iSeM logic-based and SPARQLent.
This shows that PMRF recall is significantly better than both iSeM logic-based and
SPARQLent. This means that our approach is able to reduce the amount of false
positives.

Figure 4.14: Comparative study: Recall/Precision

82

4.6.2 Average precision

The Average Precision is shown in Figure 4.15. This figure shows that PMRF has
a more accurate precision than iSeM logic-based and SPARQLent. It is possible to
conclude that PMRF has better ranking precision than the two other approaches. This
is due to the score-based ranking that gives a more coarse evaluation than a degree
aggregation. Indeed, SPARQLent and iSeM approaches adopt a subsumption-based
ranking strategy as described in [64], which gives equal weights to all similarity degrees.
In our approach, we used provides a scoring-based technique offering accurate ranking.
In addition, the ranking generated is more fine-grained than SPARQLent and iSeM.

Figure 4.15: Comparative study: Average precision

4.6.3 Query response time

Figure 4.16 compares the Query Response Time of PMRF, logic-based iSeM and SPAR-
Lent. The first column (Avg) gives the average response time for the matchmakers.
The experimental results show that the PMRF is faster than SPARQLent (760ms for
SPARQLent versus 128ms for PMRF) and slightly less faster than logic-based iSeM
(65ms for iSeM). We note that SPARQLent has especially high query response time if
the query include preconditions/effects. The SPARQLent is also based on an OWL DL
reasoner, which is an expensive processing. PMRF and iSeM have close query response
time because both consider direct parent/child relations in a subsumption graph, which
reduces significantly the query processing.

83

Figure 4.16: Comparative study: Query response time

4.6.4 Memory usage

Figure 4.17 shows the Memory Usage for PMRF, iSeM logic-based and SPARQLent. It
is easy to see that PMRF consumes less memory than iSeM logic-based and SPARQ-
Lent. This can be explained by the fact that PMRF does not require a reasoner neither
a SPARQL queries in order to compute similarities between concepts.

84

Figure 4.17: Comparative study: Memory usage

4.7 Conclusion

In this chapter, we first presented the architecture of the developed prototype, namely
PMRF. Then, we provided the results of performance evaluation of the PMRF. The dif-
ferent algorithms have been implemented and evaluated using the OWLS-TC4 datasets.
The SME2 has been used to evaluate the performance of these algorithms. Results show
that the algorithms behave globally well in comparison to similar existing ones.

85

Conclusion

Summary

The matchmaking is a crucial operation in Web service composition. The objective of
matchmaking is to discover and select the most appropriate (i.e., that responds better
to the user request) Web service among the different available candidates. Several
matchmaking frameworks are now available in the literature. However, most of these
frameworks present at least one of the following shortcomings:

1. use of strict syntactic matching, which generally leads to low recall and low pre-
cision of the retrieved services;

2. use of capability-based matchmaking, which is proven to be inadequate in prac-
tice;

3. lack of customization support; and

4. lack of accurate ranking of matching Web services, especially within semantic-
based matching.

In this research project, we proposed several conceptual and algorithmic solutions
to jointly deal with these shortcomings. More precisely, we proposed:

• Improved algorithms for similarity measure computing. We proposed two algo-
rithms to improve the computing of the similarity measure proposed in [7]. The
first algorithm affects the precision of [7]’s algorithm but improves considerably
its complexity, while the second algorithm enriches the semantic distance values
used in [7]’s, which ameliorates considerably the precision of [7]’s algorithm.

• A series of semantic matchmaking algorithms. We proposed three matchmak-
ing algorithms supporting different customization levels: (i) the trivial matching
algorithm with no customization support, (ii) the partially parameterized match-
ing algorithm that allows the user to specify the set of attributes to be used in
the matching, and (iii) the fully parameterized matching algorithm that permits
the user to control the matched attributes, the order in which attributes are com-
pared, as well as the way the sufficiency is computed. These algorithms generalize
and improve the proposals of [7][15][16][24]. We also discussed the extension of

86

the proposed matching algorithms to other types of matching. The proposed
matching algorithms permit to solve the first and third shortcomings of semantic
matchmaking frameworks.

• A technique for scoring Web services. We presented a technique for computing
Web services scores based on the information provided by the user. The proposed
technique permits to transform the similarity measures, which are defined on an
ordinal scale, into numerical values. This technique assigns to each advertised
Web service the percentage of the extent of the similarity degrees scale. The
advantage of this technique is its ability to ensure that the scores cover all the
range [0,1]. In other words, the lowest score will be equal to 0 and the highest
score will be equal to 1.

• Three algorithms for ranking Web services. We proposed three approaches for
ranking Web services: score-based, rule-based and tree-based. The score-based
approach relies on the scores only. The rule-based approach defines and uses a
series of rules to rank Web services. It permits to solve the ties problem en-
countered by the first approach. The tree-based approach relies on the use of a
tree data structure. It permits to solve the problem of ties of the first approach.
In addition, it is computationally better than the second approach. A series of
algorithms are proposed for the different ranking approaches. These algorithms
permit to solve the fourth shortcoming of semantic matchmaking frameworks.

• A prototype. A prototype called PMRF supporting all the proposed algorithms
has been implemented. We used the Semantic Matchmaker Evaluation Environ-
ment (SME2) to compare PMRF to SPARQLent [73] and iSeM [43] frameworks
in respect to precision and recall, average precision, query response time and
memory time. Results show that PMRF’s recall and average precision is signifi-
cantly better than both iSeM logic-based and SPARQLent. This means that our
approach is able to reduce the amount of false positive. The results show also
that PMRF is more faster than SPARQLent and slightly less faster than logic-
based iSeM. Finally, PMRF consumes less memory than iSeM logic-based and
SPARQLent.

In this rapport, we also studied the computational complexity of all the matching
and ranking algorithms. We also discussed and compared the proposed algorithms to
existing ones.

The solutions proposed in this research project permit to fully overcome the first,
third and fourth shortcomings of semantic matchmaking frameworks. The second short-
coming is partially addressed in this research project. It will be addressed in more depth
in our future work (See paragraph B in the Future Work section).

87

Future work

In the rest of this section, we briefly discuss some topics for extending this research
project.

A. QoS-aware semantic matchmaking and ranking of Web services

An important characteristic concerning matchmaking frameworks is their ability to
support non-functional matching. In this respect, several existing approaches consider
Quality of Service (QoS) attributes in the matching process. For instance, the author
in [53] proposes two approaches to Web service selection based on QoS attributes. The
authors in [71] discuss various techniques of QoS-based Web service selection. In the
paper of [46], a QoS-based Web service selection based on a stochastic optimization is
provided. The authors in [83] propose a QoS-aware Web service selection algorithm
based on clustering. A Web service selection QoS broker by maximizing a utility
function is proposed in [60].

The non-functional matching support have not been considered in this research
report. In the future, we intend to enhance our framework to support QoS-aware
semantic matchmaking and ranking of Web service. The work of [16] could be a start
point.

B. Multicriteria-based matching and ranking of Web services

There are few proposals that explicitly use multicriteria evaluation to support matching
and ranking of Web services (see, e.g., [23][38][59][60][88]). The authors in [88] use linear
programming techniques to compute the optimal execution plans for Web services. The
author in [59] considers two evaluation criteria (time and cost) and assigns to each one
a weigh. The best composition of Web services is then decided on the basis of the
optimum combined score and a service selection QoS broker by maximizing a utility
function is provided by [60]. Most of these proposals use weighted-sum-like aggregation
techniques. This type of methods have two main shortcomings: (i) they accept only
numerical data, and (ii) may lead to the compensation problem since low values may
be counterbalanced by high values.

In the future, we intend two use two well-known and more advanced multicriteria
methods: DRSA [31][32][33] and ELECTRE TRI [3][27]. These two methods permit to
take into account attributes that are defined on any scale type (binary, nominal, ordinal
or numerical). Hence, they are particularity suitable for including the QoS attributes
in the matching and ranking process. Furthermore, the DRSA and ELECTRE TRI can
been seen as case-based reasoning methods [45], which minimizes the cognitive effort
required from user.

C. Fuzzy semantic matchmaking and ranking of Web service

In this research project, we assumed that the data and user parameters are crisply de-
fined. However, in practice these data and parameters can be imprecise and uncertain.

88

The fuzzy sets and logic theory, introduced by L.A. Zadeh [87] (see also, e.g., [25]), can
be used to cope better with imprecision and uncertainty in Web services matching and
ranking. Some recent proposals to dealt with the imprecision and uncertainty aspects
of Web services matching and ranking have been proposed as, e.g., [20][26][36][84].
However, we think that despite of its importance in practice, the support of the impre-
cision and uncertainty in Web services matching and ranking have not received enough
attention.

In the future, we intend to enhance this research project by conceiving and devel-
oping algorithms and tools that support of imprecision and uncertainty in Web services
matching and ranking.

89

Bibliography

[1] V. Agarwal, G. Chafle, K. Dasgupta, N. Karnik, A. Kumar, S. Mittal, and B. Sri-
vastava. Synthy: A system for end to end composition of Web services. Journal
of Web Semantics, 3:311–339, 2005.

[2] M. Aiello, E. Khoury, A. Lazovik, and P. Ratelband. Optimal QoS-aware Web ser-
vice composition. In IEEE Conference on Commerce and Enterprise Computing,
pages 491–494, 2009.

[3] J. Almeida-Dias, J.R. Figueira, and B. Roy. Electre Tri-C: A multiple criteria
sorting method based on characteristic reference actions. European Journal of
Operational Research, 204(3):565–580, 2010.

[4] K. Arnold, B. O’Sullivan, R.W. Scheifler, J. Waldo, and A. Woolrath. The Jini
Specification. Addison-Wesley, Reading, MA, 1999.

[5] P. Bartalos and M. Bielikova. Fast and scalable semantic Web service composition
approach considering complex pre/postconditions. In International Workshop on
Web Service Composition and Adaptation, pages 414–421, 2009.

[6] M. Beck and B. Freitag. Semantic matchmaking using ranked instance retrieval.
In Proceedings of the 1st International Workshop on Semantic Matchmaking and
Resource Retrieval, Seoul, South Korea, September, 11 2006.

[7] U. Bellur and R. Kulkarni. Improved matchmaking algorithm for semantic Web
services based on bipartite graph matching. In IEEE International Conference on
Web Services, pages 86–93, Salt Lake City, Utah, USA, 9-13 July 2007.

[8] U. Bellur, H. Vadodaria, and A. Gupta. Semantic matchmaking algorithms. In
W. Bednorz, editor, Advances in Greedy Algorithms, pages 481–502. SInTech,
Vienna, Austria, 2008. Available from: http://www.intechopen.com/books/

greedy_algorithms/semantic_matchmaking_algorithms.

[9] S. Ben Mokhtar, A. Kaul, N. Georgantas, and V. Issarny. Efficient semantic service
discovery in pervasive computing environments. In ACM/IFIP/USENIX 2006
International Conference on Middleware, pages 240–259, Melbourne, Australia,
27 November - 1 December 2006.

90

[10] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic Web.
http://www.scientificamerican.com/article/the-semantic-web/, 2011. Scientific
American Magazine. Retrieved November 5, 2014.

[11] N. Bikakis, C. Tsinaraki, N. Gioldasis, I. Stavrakantonakis, and S. Christodoulakis.
The XML and semantic Web worlds: Technologies, interoperability and integra-
tion. a survey of the state of the art. In I.E. Anagnostopoulos, M. Bielikova,
P. Mylonas, and N. Tsapatsoulis, editors, Semantic Hyper/Multimedia Adapta-
tion, volume 418 of Studies in Computational Intelligence, pages 319–360. Springer
Berlin Heidelberg, 2013.

[12] BPEL. Business process execution language for Web services, ver-
sion 1.1. http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/
ws-bpel/ws-bpel.pdf, May 2003.

[13] V. Cardellini, E. Casalicchio, V. Grassi, and F. Lo Presti. Flow-based service
selection for Web service composition supporting multiple qos classes. In IEEE
International Conference on Web Services, pages 743–750, 2007.

[14] S. Chakhar. QoS-enhanced broker for composite Web service selection. In Proc.
of the 8th International Conference on Signal Image Technology & Internet Based
Systems, pages 533–540, Sorrento-Naples, Italy, September 2012.

[15] S. Chakhar. Parameterized attribute and service levels semantic matchmaking
framework for service composition. In Fifth International Conference on Advances
in Databases, Knowledge, and Data Applications (DBKDA 2013), pages 159–165,
Seville, Spain, 27 January - 1 February 2013.

[16] S. Chakhar, A. Ishizaka, and A. Labib. Qos-aware parameterized semantic match-
making framework for Web service composition. In V. Monfort and K.-H. Krem-
pels, editors, WEBIST 2014 - Proceedings of the 10th International Conference
on Web Information Systems and Technologies, Volume 1, Barcelona, Spain, 3-5
April, 2014, pages 50–61, Barcelona, Spain, 2014. SciTePress.

[17] S. Chakhar, S. Youcef, V. Mousseau, L. Mokdad, and S. Haddad. Multicriteria
evaluation-based conceptual framework for composite Web service selection. http:
//www.lipn.univ-paris13.fr/youcef/BookQoS, 2011.

[18] M. Champion, E. Newcomer, and D. Orchard. Web service architecture. W3C
Draft, 2000.

[19] H. Chang and K. Lee. Quality-driven Web service composition methodology for
ubiquitous services. Journal of Information Science and Engineering, 26(6):1957–
1971, 2010.

[20] K.-M. Chao, M. Younas, C.-C. Lo, and T.-H. Tan. Fuzzy matchmaking for Web
services. In Advanced Information Networking and Applications, 2005. AINA 2005.
19th International Conference on, volume 2, pages 721–726, March 2005.

91

[21] H. Che, Y. Li, A. Oberweis, and W. Stucky. Web service composition based on
XML nets. In International Conference on Systems, pages 1–10, Hawaii, 2009.

[22] UDDI Consortium. Uddi executive white paper. http://www.uddi.org/pubs/

UDDI_Executive_White_Paper.pdf, November 2001.

[23] L. Cui, S. Kumara, and D. Lee. Scenario analysis of Web service composition based
on multi-criteria mathematical goal programming. Service Science, 3(4):280–303,
2011.

[24] P. Doshi, R. Goodwin, R. Akkiraju, and S. Roeder. Parameterized semantic match-
making for workflow composition. IBM Research Report RC23133, IBM Research
Division, March 2004.

[25] D. Dubois, W. Ostasiewicz, and H. Prade. Fuzzy sets: History and basic notions.
In D. Dubois and H. Prade, editors, Fundamentals of Fuzzy Sets, volume 7 of The
Handbooks of Fuzzy Sets Series, pages 21–124. Springer, US, 2000.

[26] G. Fenza, V. Loia, and S. Senatore. A hybrid approach to semantic Web services
matchmaking. International Journal of Approximate Reasoning, 48(3):808–828,
2008.

[27] J.R. Figueira, V. Mousseau, and B. Roy. Electre methods. In J.R. Figueira,
S. Greco, and M. Ehrgott, editors, Multiple criteria decision analysis: State of the
art surveys, pages 133–162. Springer-Verlag, New York, 2005.

[28] C. Forgy. Rete: A fast algorithm for the many patterns/many objects match
problem. Artificial Intelligence, 19(1):17–37, 1982.

[29] P. Fu, S. Liu, H. Yang, and L. Gu. Matching algorithm of Web services based
on semantic distance. In International Workshop on Information Security and
Application (IWISA 2009), pages 465–468, Qingdao, China, 21-22 November 2009.

[30] F.E. Gmati, N. Yacoubi-Ayadi, and S. Chakhar. Parameterized algorithms for
matching and ranking Web services. In Proceedings of the On the Move to Mean-
ingful Internet Systems: OTM 2014 Conferences 2014, volume 8841 of Lecture
Notes in Computer Science, pages 784–791. Springer, 2014.

[31] S. Greco, B. Matarazzo, and R. Slowiński. Rough sets theory for multicriteria
decision analysis. European Journal of Operational Research, 129(1):1–47, 2001.

[32] S. Greco, B. Matarazzo, and R. Slowiński. Rough approximation by dominance
relations. International Journal of Intelligent Systems, 17(2):153–171, 2002.

[33] S. Greco, R. Slowiński, and Y. Yao. Bayesian decision theory for dominance-based
rough set approach. In J.T. Yao, P. Lingras, W.-Z. Wu, M. Szczuka, N.J. Cercone,
and D. Slezak, editors, Rough Sets and Knowledge Technology, volume 4481 of
Lecture Notes in Computer Science, pages 134–141. Springer Berlin Heidelberg,
2007.

92

[34] R. Guo, J. Le, and X.L. Xiao. Capability matching of Web services based on
OWL-S. In Sixteenth International Workshop on Database and Expert Systems
Applications, pages 653–657, 22-26 August 2005.

[35] H. Hao, H. Haas, and D. Orchard. Web services architecture usage scenarios, 2004.

[36] C.-L Huang. A moderated fuzzy matchmaking for Web services. In Proceedings
of the Fifth International Conference on Computer and Information Technology
(CIT 2005), pages 1116–1122, 2005.

[37] Y.Qiu J. Ge and S. Yin. Web services composition method based on owl. In
International Conference on Computer Science and Software Engineering, pages
74–77, China, 2008.

[38] B. Jeong, H. Cho, B. Kulvatunyou, and A. Jones. A multi-criteria Web services
composition problem. In IEEE International Conference on Information Reuse
and Integration(IRI 2007), pages 379–384, 2007.

[39] M. Klusch. Semantic Web service coordination. In CASCOM: Intelligent Service
Coordination in the Semantic Web Whitestein Series in Software Agent Technolo-
gies and Autonomic Computing, pages 59–104. Springer Verlag, 2008.

[40] M. Klusch, M. Dudev, J. Misutka, P. Kapahnke, and M. Vasileski. SME2 Version
2.2. User Manual. The German Research Center for Artificial Intelligence (DFKI),
Germany, 2010.

[41] M. Klusch and A. Gerber. Evaluation of service composition planning with QWLS-
XPlan. In International Conference on Web Intelligence and Intelligent Agent
Technology, pages 117–120, 2006.

[42] M. Klusch and P. Kapahnke. The iSeM matchmaker: A flexible approach for
adaptive hybrid semantic service selection. Web Semantics: Science, Services and
Agents on the World Wide Web, 15:1–14, 2012.

[43] M. Klusch and P. Kapahnke. The iSeM matchmaker: A flexible approach for
adaptive hybrid semantic service selection. Web Semantics: Science, Services and
Agents on the World Wide Web, 15(0):1–14, 2012.

[44] N. Kokash, A. Birukou, and V. DAndrea. Web service discovery based on past
user experience. In Proceedings of the 10th International Conference on Business
Information Systems, pages 95–107, April 25-27 2007.

[45] J.L. Kolodner. An introduction to case-based reasoning. Artificial Intelligence
Review, 6(1):3–34, 1992.

[46] R. Krithiga. Qos-aware Web service selection using SOMA. Global Journal of
Computer Science and Technology, 12(10):46–51, 2012.

93

[47] J. Kuck and M. Gnasa. Context-sensitive service discovery meets information
retrieval. In Fifth Annual IEEE International Conference on Pervasive Computing
and Communications Workshops (PerCom’07), pages 601–605, March 2007.

[48] H.W. Kuhn. The Hungarian method for the assignment problem. Naval Research
Logistics Quarterly, 2:83–97, 1955.

[49] U. Küster and B. König-Ries. Measures for benchmarking semantic Web service
matchmaking correctness. In Proceedings of the 7th International Conference on
The Semantic Web: Research and Applications - Volume Part II, ESWC’10, pages
45–59, Berlin, Heidelberg, 2010. Springer-Verlag.

[50] C. Lee, A. Helal, N. Desai, V. Verma, and B. Arslan. Konark: A system and
protocols for device independent, peer-to-peer discovery and delivery of mobile
services. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems
and Humans, 33(6):682–696, 2003.

[51] L. Li and I. Horrocks. A software framework for matchmaking based on semantic
web technology. In Proceedings of the 12th International Conference on World
Wide Web, WWW ’03, pages 331–339, New York, NY, USA, 2003. ACM.

[52] N. Lin, U. Kuter, and E. Sirin. Web service composition with user preferences.
In S. Bechhofer, M. Hauswirth, J. Hoffmann, and M. Koubarakis, editors, The
Semantic Web: Research and Applications, volume 5021 of Lecture Notes in Com-
puter Science, pages 629–643. Springer Berlin Heidelberg, 2008.

[53] S.A. Ludwig. Memetic algorithm for Web service selection. In Proceedings of the
3rd Workshop on Biologically Inspired Algorithms for Distributed Systems, BADS
’11, pages 1–8, New York, NY, USA, 2011. ACM.

[54] Q. Lv, J. Zhou, and Q. Cao. Service matching mechanisms in pervasive com-
puting environments. In Intelligent Systems and Applications, 2009. ISA 2009.
International Workshop on, pages 1–4, May 2009.

[55] Z. Maamar, S.K. Mostefaoui, and Q.H. Mahmoud. Context for personalized Web
services. In In Proceedings of the 38th Annual Hawaii International Conference
on System Sciences (HICSS’05), pages 166b–166b, Jan 2005.

[56] M. Malaimalavathani and R. Gowri. A survey on semantic Web service discov-
ery. In International Conference on Information Communication and Embedded
Systems (ICICES 2013), pages 222–225, February 2013.

[57] U.S. Manikrao and T.V.Prabhakar. Dynamic selection of Web services with rec-
ommendation system. In Proceedings of the International Conference on Next
Generation Web Services Practices (NWeSP 2005), pages 117–121, August 2005.

[58] R. Manoharan, A. Archana, and S.N. Cowla. Hybrid Web services ranking algo-
rithm. International Journal of Computer Science Issues, 8(2):83–97, 2011.

94

[59] D.A. Menascé. Composing Web services: A QoS view. IEEE Internet Computing,
8(6):88–90, 2004.

[60] D.A. Menascé and V. Dubey. Utility-based QoS brokering in service oriented
architectures. In IEEE International Conference on Web Services (ICWS 2007),
pages 422–430, 2007.

[61] H. Mili, G. Tremblay, A. Caillot, and R.B. Tamrout. Web service composition
as a function cover problem. In MCeTech Montreal Conference on eTechnologies,
pages 73–85, Canada, 2005.

[62] B.A. Miller and R.A. Pascoe. Salutation service discovery in pervasive computing
environments,. White paper, IBM Pervasive Computing, February 2000.

[63] D. Mukhopadhyay and A. Chougule. A survey on Web service discovery ap-
proaches. In D.C. Wyld, J. Zizka, and D. Nagamalai, editors, Advances in Com-
puter Science, Engineering & Applications, volume 166 of Advances in Intelligent
and Soft Computing, pages 1001–1012. Springer Berlin Heidelberg, 2012.

[64] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic matching of
web services capabilities. In Proceedings of the First International Semantic Web
Conference on The Semantic Web, ISWC ’02, pages 333–347, London, UK, UK,
2002. Springer-Verlag.

[65] D. Petrova-Antonova and A. Dimov. Towards a taxonomy of Web service com-
position approaches. Scalable Computing: Practice and Experience, 12:377–384,
2011.

[66] M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, and P. Traverso. Planning
and monitoring Web service composition. Lecture Notes in Computer Science,
3192:106–115, 2004.

[67] G. Priyadharshini, R. Gunasri, and B.B. Saravana. A survey on semantic Web ser-
vice discovery methods. International Journal of Computer Applications, 82(11):8–
11, 2013.

[68] M. Qiao, F. Khendek, A. Serhani, R. Dsouli, and G. Roch. An architecture for
automatic qos adaptation for composite Web services. Journal of Web Services
Practices, 4(1):18–27, 2009.

[69] P.R. Reddy, A. Damodaram, and A.V.K. Prasad. Heterogeneous matchmaking
approaches for semantic Web service discovery using owl-s. In SureshChandra
Satapathy, P.S. Avadhani, and Ajith Abraham, editors, Proceedings of the Inter-
national Conference on Information Systems Design and Intelligent Applications
2012 (INDIA 2012) held in Visakhapatnam, India, January 2012, volume 132 of
Advances in Intelligent and Soft Computing, pages 605–612. Springer Berlin Hei-
delberg, 2012.

95

[70] W. Rong, K. Liu, and L. Liang. Personalized Web service ranking via user group
combining association rule. In IEEE International Conference on Web Services
(ICWS 20090, pages 445–452, July 2009.

[71] M. Sathya, M. Swarnamugi, P. Dhavachelvan, and G. Sureshkumar. Evaluation of
QoS based Web-service selection techniques for service composition. International
Journal of Software Engineering, 1(5):73–90, 2011.

[72] M.L. Sbodio. SPARQLent: A SPARQL based intelligent agent performing service
matchmaking. In B. Blake, L. Cabral, B. König-Ries, U. Küster, and D. Martin,
editors, Semantic Web Services, pages 83–105. Springer Berlin Heidelberg, 2012.

[73] M.L. Sbodio, D. Martin, and C. Moulin. Discovering semantic Web services using
SPARQL and intelligent agents. Web Semantics: Science, Services and Agents on
the World Wide Web, 8(4):310–328, 2010.

[74] A. Segev and E. Toch. Context based matching and ranking of Web services for
composition. IEEE Transactions on Services Computing, 3(2):210–222, 2011.

[75] D. Skoutas, D. Sacharidis, A. Simitsis, and T. Sellis. Ranking and clustering
Web services using multicriteria dominance relationships. IEEE Transactions on
Services Computing, 3(3):163–177, 2010.

[76] A. Sridhar, S.S. Prasad, and M. Ubale. Semantic Web service composition with
quality of service. International Journal of Advanced Research in Computer Sci-
ence & Technology, 1(1):73–81, 2013.

[77] K. Sycara, M. Paolucci, M. van Velsen, and J. Giampapa. The retsina mas infras-
tructure. Autonomous Agents and Multi-Agent Systems, 7(1-2):29–48, 2003.

[78] Y. Syu, S. Ma JY. Kuo, and Yong-Yi FanJiang. A survey on automated service
composition methods and related techniques. In Proc. of the Ninth International
Conference on Services Computing, pages 290–297, Hawaii,USA, 24-29 June 2012.

[79] W3C. Web services architecture requirements. http://www.w3.org/TR/

wsa-reqs, October 2002.

[80] W3C. Web services glossary. http://www.w3.org/TR/2004/

NOTE-ws-gloss-20040211/#webservice, February 2004.

[81] W3C. W3C semantic Web activity. http://www.w3.org/2001/sw/, November 7
2011. Retrieved November 3, 2014.

[82] R. Wang, C.-H. Chi, and J. Deng. A fast heuristic algorithm for the compos-
ite Web service selection. In Proceedings of the Joint International Conferences
on Advances in Data and Web Management, APWeb/WAIM ’09, pages 506–518,
Berlin, Heidelberg, 2009. Springer-Verlag.

96

[83] Y. Xia, P. Chen, L. Bao, M. Wang, and J. Yang. A QoS-aware Web service selection
algorithm based on clustering. In IEEE International Conference on Web Services
(ICWS), pages 428–435, 2011.

[84] B.-H. Xie, Y.-J. Zhang, and Y.-Y. Guo. A Web service matchmaker based on fuzzy
logic and OWL-S. In Computational Aspects of Social Networks (CASoN), 2010
International Conference on, pages 590–599, 2010.

[85] H. Q. Yu and S. Reiff-Marganiec. Semantic Web services composition via planning
as model checking. Technical report, University of Leicester, 2006.

[86] T. Yu and K.-J. Lin. Service selection algorithms for Web services with end-
to-end qos constraints. In Proceedings of the IEEE International Conference on
e-Commerce Technology (CEC 2004), pages 129–136, July 2004.

[87] L.A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965.

[88] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q.Z. Sheng. Quality driven
Web services composition. In 12th International Conference on World Wide Web,
pages 411–421, New York, NY, USA, 2003. ACM.

97

Glossary

• BPEL: Business Process Execution Language.

• HTTP: HyperText Transfer Protocol.

• HTTPS: Hypertext Transfer Protocol Secure.

• IOPE: Inputs-Outputs-Preconditions-Effects.

• OWL: Web Ontology Language.

• OWL-S: Web Ontology Language for Services.

• OWLS-TC: Web Ontology Language Service retrieval Test Collection.

• PMRF: Parameterized Matching-Ranking Framework.

• QoS: Quality of Service.

• SME2 Semantic Matchmaker Evaluation Environment.

• RDF: Resource Description Framework.

• SOA: Service-Oriented Architecture.

• SOAP: Simple Object Access Protocol.

• UDDI: Universal Description, Discovery, and Integration.

• URI: Uniform Resource Identifier.

• W3C: World Wide Web Consortium.

• WSDL: Web Service Description Language.

• XML: eXtensible Markup Language.

98

Résumé

Le matchmaking est une tâche d’importance cruciale au niveau de la composition des ser-
vices Web. L’objectif du matchmaking est la découverte et la sélection des services Web les
plus pertinents parmi les différents services publiés. Plusieurs frameworks de matchmaking
sont disponibles dans la littérature, mais ces frameworks présentent au moins l’une de limites
suivantes : (i) l’utilisation d’un filtre unique basé sur la similarité syntaxique, ce qui réduit
la précision du matchmaker ; (ii) la considération des attributs fonctionnels uniquement au
cours du matchmaking ; (iii) le manque de flexibilité du matchmaking ; et (iv) l’absence d’un
ranking précis des services Web identifiés, en particulier quand le matchmaking est basé sur la
sémantique. Dans ce projet de recherche, nous proposons plusieurs solutions conceptuelles et al-
gorithmiques, pour remédier à l’ensemble de ces problèmes. Nous allons particulièrement traiter
la première, troisième et quatrième limites. La deuxième limite est abordée partiellement. Un
prototype appelé PMRF (Parametrized Matching and Ranking Framework) supportant les
algorithmes proposés a été implémenté. L’analyse de performance de ce prototype a montré
qu’il réalise des résultats satisfaisants en comparaison à des framework similaires.

Mots clés: Services Web, Composition des services Web, Similarité sémantique, Matchmaking,
Ranking des services Web.

Abstract

The matchmaking is a crucial operation in Web service composition. The objective of match-
making is to discover and select the most appropriate (i.e., that responds better to the user
request) Web service among the different available candidates. Several matchmaking frame-
works are now available in the literature. However, most of these frameworks present at least
one of the following shortcomings: (i) use of strict syntactic matching, which generally leads to
low recall and low precision of the retrieved services; (ii) use of capability-based matchmaking,
which is proven to be inadequate in practice; (iii) lack of customization support; and (iv) lack
of accurate ranking of matching Web services, especially within semantic-based matching. In
this research project, we propose several conceptual and algorithmic solutions to jointly deal
with these shortcomings. More precisely, the solutions proposed in this research project permit
to fully overcome the first, third and fourth shortcomings of semantic matchmaking frame-
works. The second shortcoming is partially addressed in this research project. A prototype
called PMRF (Parametrized Matching and Ranking Framework) supporting the proposed al-
gorithms has been implemented. The performance analysis shows that the algorithms behave
globally well in comparison to similar existing ones.

Keywords: Web Service, Service Composition, Semantic Similarity, Matchmaking, Service
Ranking.

